K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2017

\(A=7+7^2+7^3+..........+7^{4n}\)

\(\Leftrightarrow A=\left(7+7^2+7^3+7^4\right)+..........+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)

\(\Leftrightarrow A=7\left(1+7+7^2+7^3\right)+.........+7^{4n-3}\left(1+7+7^2+7^3\right)\)

\(\Leftrightarrow A=7.400+7^5.400+..........+7^{4n-3}.400\)

\(\Leftrightarrow A=400\left(7+7^5+........+7^{4n-3}\right)⋮400\)

\(\Leftrightarrow A⋮400\rightarrowđpcm\)

13 tháng 9 2017

\(A=7^1+7^2+7^3+7^4+7^{4k}\)

=\(7\left(1+7^1+7^2+7^3\right)+...+7^{4k-3}\left(1+7^1+7^2+7^3\right)\)

=\(400\left(7+...+7^{4k-3}\right)⋮400\)

Do đó:\(A⋮400\left(đpcm\right)\)

23 tháng 2 2017

Hình bạn tự vẽ nhé!!!

Ta có: \(\widehat{ACB}=180^o-\widehat{ACD}=180^o-100^o=80^o\\ \)

Xét tam giác ADC ta có: \(\widehat{DAC}+\widehat{ACD}+\widehat{ADC}=180^o\)

\(\Leftrightarrow y^o+100^o+x^o=180^o\)

\(\Leftrightarrow x^o+y^o=180^o-100^o=80^o\left(1\right)\)

Xét tam giác ABC ta có:\(\widehat{BAC}+\widehat{ABD}+\widehat{ADB}=180^o\)

\(\Leftrightarrow2y^o+2x^o+x^o=180^o\)

\(\Leftrightarrow2y^o+3x^o=180^o\left(2\right)\)

Thế (1) vào (2) ta được: \(2.\left(80-x^o\right)+3x^o=180^o\)

\(\Leftrightarrow160^o-2x^o+3x^o=180^o\)

\(\Leftrightarrow160^o+x^o=180^o\)

\(\Leftrightarrow x^o=180^o-160^o=20^o\)

Khi đó giá trị của \(x=20\)

Chúc bạn học tốtleuleu

22 tháng 2 2017

\(x=20\)

4 tháng 3 2017

Ta có: \(\left(x-1\right)^2\ge0\) \(\Leftrightarrow x^2-2x+1\ge0\)\(\Leftrightarrow x^2+1\ge2x\).\(\left(1\right)\)

\(\left(y-2\right)^2\ge0\Leftrightarrow y^2-4y+4\ge0\Leftrightarrow x^2+4\ge4y\).\(\left(2\right)\)

\(\left(z^2-9\right)\ge0\Leftrightarrow z^2-6z+9\ge0\Leftrightarrow z^2+9\ge6z\).\(\left(3\right)\)

Từ \(\left(1\right),\left(2\right)\)\(\left(3\right)\) nhân vế theo vế ta được:

\(\left(x^2+1\right).\left(y^2+4\right).\left(z^2+9\right)\ge48xyz\)

mà theo đề ta có:\(\left(x^2+1\right).\left(y^2+4\right).\left(z^2+9\right)=48xyz\)

nên \(\left\{{}\begin{matrix}x^2+1=2x\\y^2+4=4y\\z^2+9=6z\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)

Thay \(x=1;y=2;z=3\)vào biểu thức A ta được:

\(A=\dfrac{x^3+y^3+z^3}{\left(x+y+z\right)^2}=\dfrac{1+8+27}{\left(1+2+3\right)^2}=1\)

Vậy giá trị của biểu thức \(A=\dfrac{x^3+y^3+z^3}{\left(x+y+z\right)^2}\)là 1.

6 tháng 9 2017

a, Xét tam giác ABC:

AD= DB

DE// BC

=> AE= EC ( tính chất đg TB)

=> AE= EC = \(\dfrac{1}{2}\)AC= \(\dfrac{1}{2}\).8= 4 cm.

b,Xét tam giác ABC : ^B= 90o

AC2= AB2 + BC2 ( Định lý Pitago)

152= 92 + BC2

=> BC2= 152 - 92 = 144

BC = 12 cm

Theo tính chất đg TB, ta có: DE// BC

=> DE= \(\dfrac{1}{2}\)BC = \(\dfrac{1}{2}\).12 = 6cm

Chúc bạn học tốt !!hihi

14 tháng 8 2016

A B C D M N P Q K

Bạn cần thêm điều kiện AB = AD .

Gọi K là trung điểm của AD. Dễ dàng chứng minh được MNPQ là hình vuông 

Suy ra : \(S_{MNPQ}=\frac{NQ^2}{2}\)

Mặt khác, ta luôn có : \(KQ+QN\ge KN\) \(\Rightarrow QN\ge\left|KN-KQ\right|=\frac{1}{2}\left|c-a\right|\)

\(\Rightarrow QN^2\ge\frac{\left(c-a\right)^2}{4}\Rightarrow S_{MNPQ}=\frac{QN^2}{2}\ge\frac{\left(c-a\right)^2}{8}\)

Dấu "=" xảy ra khi M , Q, N thẳng hàng => AB // CD

25 tháng 8 2017

B1 : Lấy N trung điểm AD ( thuộc AD ) => NA = ND = AD/2 = 5cm (1)

Hình thang ABCD có :

NA = ND ( cmt )

MB = MC ( gt )

=> NM là đg trung bình hình thang ABCD

=> NM = (AB + CD ) / 2 = 10 /2 = 5cm (2)

Xét tam giác AMD có : MN = 5cm ( 2)

mà MN = AD/2 (1)

=> tam giác AMD vuông ( đg trung tuyến ứng vs cạnh huyền = nửa cạnh huyền )

25 tháng 8 2017

=> AM vg góc với DM ( ddpcm )

chúc bạn học tốt :D

3 tháng 8 2017

A B C D K

đáp ứng nhu cầu của bạn :))

3 tháng 8 2017

thank bạn