K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2018

nguyenlinh0123

7 tháng 4 2018

Xét  \(\Delta BEC\) và     \(\Delta CAF\) có:

\(\widehat{CBE}=\widehat{FCA}=90^0\)

\(\widehat{BEC}=\widehat{CAF}\)  (cùng phụ với góc CAE)

suy ra:   \(\Delta BEC~\Delta CAF\)  (g.g)

\(\Rightarrow\)\(\frac{BE}{AC}=\frac{BC}{CF}\)

\(\Rightarrow\)\(BE.CF=AC.BC\)

9 tháng 3 2023

xét ΔABC  và ΔADC có

\(\widehat{ADC}\)=\(\widehat{ABC}\)=90\(^o\)

\(\dfrac{AB}{DC}\)=\(\dfrac{BC}{AD}\)=1

=>ΔABC∼ΔADC(c.g.c)

 

 

9 tháng 3 2023

xét ΔADF và ΔAFE có

\(\widehat{ADF}\) Chung

\(\widehat{AED}\)=\(\widehat{AEF}\)=90\(^o\)

->ΔADF ∼ ΔAFE(2)

xét ΔAEF và ΔABC có

\(\widehat{CAB}\) chung

\(\widehat{ABC}\)=\(\widehat{AFE}\)=90\(^o\)

->ΔAEF ∼ ΔABC (3)

từ (1) ,(2) và (3)=>ΔADF ∼ ΔDCA 

16 tháng 3 2020

A B C D H I M N O

a, xét tứ giác ADMN có : ^NAD = ^ADM = ^ANM = 90

=> ADMN là hình chữ nhật

b, có M là trung điểm của DC (gt)

I là trung điểm của CH (gt)

=> MI là đường trung bình của tam giác DHC (đn)

=> MI // DH (tc)

DH _|_ AC (gt)

=> MI _|_ AC

c, gọi AM cắt DM tại O 

ANMD là hình chữ nhật (câu a)

=> AM = DN (tc)             (1) và O là trung điểm của AM (tc)

xét tam giác AIM vuông tại I

=> IO = AM/2 và (1)

=> IO = DN/2

=> tam giác DNI vuông tại I (đl)

Các bạn không cần vẽ hình đâu chỉ cần giải ra thôi1) Cho hình bình hành ABCD E là điểm trên AB. DE kéo dài cắt đường thẳng BC tại FChứng minh tam giác ADE đồng dạng với tam giác BFE2) Cho tam giác ABC vuông góc tại A với AC bằng 3 cm BC bằng 5cm Vẽ đường cao AKChứng minh rằng tam giác ABC đồng dạng với tam giác KBA và AB2 = BK.BC3) Cho tam giác ABC có AB = 15cm AC = 20cm BC = 25 cm. Trên cạnh AB lấy điểm...
Đọc tiếp

Các bạn không cần vẽ hình đâu chỉ cần giải ra thôi

1) Cho hình bình hành ABCD E là điểm trên AB. DE kéo dài cắt đường thẳng BC tại F

Chứng minh tam giác ADE đồng dạng với tam giác BFE

2) Cho tam giác ABC vuông góc tại A với AC bằng 3 cm BC bằng 5cm Vẽ đường cao AK

Chứng minh rằng tam giác ABC đồng dạng với tam giác KBA và AB= BK.BC

3) Cho tam giác ABC có AB = 15cm AC = 20cm BC = 25 cm. Trên cạnh AB lấy điểm E sao cho AE 18cm trên cạnh AC lấy F sao cho AF = 6 cm

So sánh AE/AC;AF/AB

4) Cho tam giác ABC vuông tại A đường cao AH cắt phân giác BD tại I

Chứng minh rằng a,IA.BH = IH.BA

                                b,Tam giác ABC đồng dạng với tam giác HBA

5) cho tam giác AOB có AB bằng 18 cm OA = 12 cm OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD bằng 3 cm. Qua D kẻ đường thẳng song song với AB cắt AO ở C. Gọi F là giao điểm của AD và BC

Tính độ dài OC;CD

6) Cho tam giác nhọn ABC có AB bằng 12 cm AC bằng 15 cm. Trên các cạnh AB và AC lấy các điểm D và E sao cho AD = 4 cm,AE = 5cm

Chứng minh rằng DE // BC, Từ đó suy ra tam giác ADE đồng dạng với tam giác ABC?

7) Cho tam giác ABC vuông tại A D nằm giữa A và C. Kẻ đường thẳng D vuông góc với BC tại E và cắt AB tại F 

Chứng minh tam giác ADF đồng dạng với tam giác EDC

 

1
13 tháng 2 2018

tính đến hết tết à