K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
9 tháng 3 2023
xét ΔABC và ΔADC có
\(\widehat{ADC}\)=\(\widehat{ABC}\)=90\(^o\)
\(\dfrac{AB}{DC}\)=\(\dfrac{BC}{AD}\)=1
=>ΔABC∼ΔADC(c.g.c)
16 tháng 3 2020
A B C D H I M N O
a, xét tứ giác ADMN có : ^NAD = ^ADM = ^ANM = 90
=> ADMN là hình chữ nhật
b, có M là trung điểm của DC (gt)
I là trung điểm của CH (gt)
=> MI là đường trung bình của tam giác DHC (đn)
=> MI // DH (tc)
DH _|_ AC (gt)
=> MI _|_ AC
c, gọi AM cắt DM tại O
ANMD là hình chữ nhật (câu a)
=> AM = DN (tc) (1) và O là trung điểm của AM (tc)
xét tam giác AIM vuông tại I
=> IO = AM/2 và (1)
=> IO = DN/2
=> tam giác DNI vuông tại I (đl)
nguyenlinh0123
Xét \(\Delta BEC\) và \(\Delta CAF\) có:
\(\widehat{CBE}=\widehat{FCA}=90^0\)
\(\widehat{BEC}=\widehat{CAF}\) (cùng phụ với góc CAE)
suy ra: \(\Delta BEC~\Delta CAF\) (g.g)
\(\Rightarrow\)\(\frac{BE}{AC}=\frac{BC}{CF}\)
\(\Rightarrow\)\(BE.CF=AC.BC\)