\(\perp BD\left(H\in BD\right)\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tham khảo:

Bài 1: Cho tam giác ABC vuông tại A, AB = 15cm; AC=20cm, đường cao AH

a) Chứng minh tam giác ABC đồng dạng tam giác HBA

b) Tính BC;AH

c) Từ H, kẻ HM vuông góc với AB. Kẻ HN vuông góc với AC. Gọi I là trung điểm của BC. Chứng minh rằng AI vuông góc với MN

a) xét ΔΔABC và ΔΔHBA có

góc BAC = goc BHA (=9000)

góc B chung

=> tam giác ABC đồng dạng vs tam giác HBA (g.g)

b)áp dụng p/l py ta go trong tam giác vuông ABC ta có

BC22=AB22 + AC22=225 + 400=625

=> BC = 625−−−√625=25cm

ta có ABHB=BCBAABHB=BCBA(cm câu a)

hay 15HB=251515HB=2515=> HB = 15*15/25 = 9 cm

=> HC = BC - HB =25-9=16cm

xét tam giác AHB và tam giác CHA có

góc AHB = góc AHC (=9000)

góc BAH = góc C ( vì cùng phụ vs góc HAC )

=> tam giác AHB đồng dạng vs tam giac CHA (g.g)

=> AHCH=BHAH=>AH2=CH⋅BH=16⋅9=144=>AH=144=12−−−−−−−√cm

29 tháng 3 2018

a)  Xét  \(\Delta HAD\) và    \(\Delta ABD\)  có:

      \(\widehat{AHD}=\widehat{BAD}=90^0\)

     \(\widehat{BDA}\)  chung

suy ra:    \(\Delta HAD~\Delta ABD\)

b)   Áp dụng định lý Pytago ta có:

     \(BD^2=AD^2+AB^2\)

\(\Leftrightarrow\)\(BD^2=15^2+20^2=625\)

\(\Leftrightarrow\)\(BD=\sqrt{625}=25\)cm

    \(\Delta HAD~\Delta ABD\)  \(\Rightarrow\)\(\frac{AH}{AB}=\frac{AD}{BD}\) \(\Rightarrow\) \(AH=\frac{AB.AD}{BD}\)

hay      \(AH=\frac{20.15}{25}=12\)

P/s: tính AH áp dụng ngay hệ thức lượng cx đc

18 tháng 6 2020

a, Xét 2 tam giác vuông đó có: (ADB)=(CBD) (cùng phụ với góc BDC) 

b, AH.BD=AD.AB vì bằng 2 lần diện tích tam giác ADB.

c, Áp dụng hệ thức lượng trong tam giác vuông tính được AH.

Biết AH, BD tính được S tam giác.

23 tháng 8 2020

a) Xét 2 tam giác ADB và BCD có:

góc DAB = góc DBC (gt)

góc ABD = góc BDC ( so le trong )

nên tam giác ADB đồng dạng với tam giác BDC.(1)

b) Từ (1) ta được AB/BC = DB/CD = AB/BD

hay ta có; AD/BC = AB/BD <==> 3,5/BC = 2,5/5

==> BC= 3,5*5/2,5 = 7 (cm)

ta cũng có: DB/CD = AB/BD <==> 5/CD = 2,5/5

==> CD = 5*5/2,5 =10 (cm)

c) Từ (1) ta được;

AD/BC = DB/CD = AB/BD hay 3.5/7 = 5/10 = 2,5/5 = 1/2 .

ta nói tam giác ADB đồng giạc với tam giác BCD theo tỉ số đồng dạng là 1/2

mà tỉ số diện tích bằng bình phương tỉ số động dạng

do đó S ADB/ S BCD = (1/2)^2 = 1/4

21 tháng 6 2020

a).

Vì hai đường thẳng AB và  DC song song với nhau nên => góc BDC = góc ADB

Xét 2 tam giác AHB và tam giác BCD ta có: Góc AHB = Góc BCD (gt); Góc BDC = Góc ADB. => 2 tam giác đồng dạng với nhau theo trường hợp góc - góc.

b)

Xét 2 tam giác ADH và ADB ta có: Góc D chung; Góc AHD = Góc DAB. => 2 tam giác đồng dạng với nhau theo trường hợp góc - góc.

=> AD/DH = DB/AD <=> AD^2 = DH x AD

c) và d) không biết làm, bạn thông cảm. 

Chúc học tốt.