Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại A và ΔDAK vuông tại D có
\(\widehat{ABD}=\widehat{DAK}\left(=90^0-\widehat{ADB}\right)\)
Do đó: ΔABD~ΔDAK
b: Ta có:ΔABD vuông tại A
=>\(BD^2=AB^2+AD^2\)
=>\(BD^2=5^2+12^2=169\)
=>\(BD=\sqrt{169}=13\left(cm\right)\)
Ta có: ΔABD~ΔDAK
=>\(\dfrac{AD}{DK}=\dfrac{AB}{DA}\)
=>\(\dfrac{5}{DK}=\dfrac{12}{5}\)
=>\(DK=\dfrac{25}{12}\left(cm\right)\)
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//CD)
Do đó: ΔAHB~ΔBCD
b: ta có: ΔABD vuông tại A
=>\(AB^2+AD^2=BD^2\)
=>\(BD^2=12^2+5^2=169\)
=>\(BD=\sqrt{169}=13\left(cm\right)\)
Xét ΔABD vuông tại A có AH là đường cao
nên \(AH\cdot BD=AB\cdot AD\)
=>\(AH\cdot13=12\cdot5=60\)
=>\(AH=\dfrac{60}{13}\left(cm\right)\)
c: Xét ΔBCD có CE là phân giác
nên \(\dfrac{EB}{ED}=\dfrac{BC}{CD}\)(1)
Xét ΔHAB vuông tại H và ΔADB vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHAB~ΔADB
=>\(\dfrac{HA}{AD}=\dfrac{HB}{AB}\)
=>\(\dfrac{HA}{HB}=\dfrac{AD}{AB}=\dfrac{BC}{CD}\left(2\right)\)
Từ (1),(2) suy ra \(\dfrac{EB}{ED}=\dfrac{HA}{HB}\)
=>\(EB\cdot HB=HA\cdot ED\)
a)Vì tam giác ABCD là HCN =>góc A = 90 độ
xét tam giác AHD VÀ TAM GIÁC ABD CÓ ;
GÓC D CHUNG
GÓC AHD = GÓC A
=>TAM GIÁC AHD ĐỒNG DẠNG VỚI TAM GIÁC BAD(G.G)
B)vÌ TAM GIÁC AHD ĐỒNG DẠNG VỚI TAM GIÁC BAD (THEO CÂU A)
=>GÓC HAD=GÓC ABD(1)
XÉT TAM GIÁC AHD VÀ TAM GIÁC AHB CÓ :
GÓC AHD = GÓC AHB (=90 ĐỘ )
GÓC HAD= GÓC ABD (THEO 1)
=>TAM GIÁC AHD ĐỒNG DẠNG VỚI TAM GIÁC BHA(G.G)
=>AH/HD=BH/AH
=>AH^2=BH.HD(DPCM)
a) Xét ΔAHD vuông tại H và ΔBAD vuông tại A có
\(\widehat{ABD}\) chung
Do đó: ΔAHD∼ΔBAD(g-g)
Áp dụng định lí Pytago vào ΔADH vuông tại H, ta được:
\(AH^2+HD^2=AD^2\)
\(\Leftrightarrow HD^2=AD^2-AH^2=5^2-4^2=9\)
hay HD=3(cm)
Ta có: ΔAHD∼ΔBAD(cmt)
nên \(\dfrac{AH}{BA}=\dfrac{HD}{AD}=\dfrac{AD}{BD}\)
\(\Leftrightarrow\dfrac{4}{AB}=\dfrac{3}{5}\)
hay \(AB=\dfrac{20}{5}cm\)
Vậy: \(AB=\dfrac{20}{5}cm\)
b) Xét ΔAHD vuông tại H và ΔBHA vuông tại H có
\(\widehat{HAD}=\widehat{HBA}\left(=90^0-\widehat{ADH}\right)\)
Do đó: ΔAHD∼ΔBHA(g-g)
⇔\(\dfrac{AH}{BH}=\dfrac{HD}{HA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(HA^2=HB\cdot HD\)(đpcm)
a: Áp dụng định lí Pytago vào ΔBDC vuông tại C, ta được:
\(DB^2=BC^2+CD^2\)
\(\Leftrightarrow DB^2=12^2+9^2=225\)
hay DB=15(cm)
Xét ΔBDC có
BE là đường phân giác ứng với cạnh DC
nên \(\dfrac{EC}{ED}=\dfrac{BC}{BD}=\dfrac{9}{15}=\dfrac{3}{5}\)
b: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)
Do đó: ΔAHB\(\sim\)ΔBCD
a) Xét ΔABD vàΔ HAD có:
\(\widehat{DAB}\) =\(\widehat{AHB}\)= 90o( gt)
\(\widehat{D}\) chung
⇒Δ ABD ∼ ΔHAD(g-g)
b) Áp dụng định lí Py-ta-go vào Δ ABD vuông tại A ta có:
BD=\(\sqrt{AD^2+AB^2}\)=\(\sqrt{3^2+4^2}\)=\(\sqrt{25}\)=5(cm)
Theo câu a ta có:Δ ABD ∼ ΔHAD
⇒\(\dfrac{BD}{AD}\)=\(\dfrac{AD}{HD}\)hay \(\dfrac{5}{3}\)=\(\dfrac{3}{HD}\)⇒HD=\(\dfrac{3.3}{5}\)=1,8 (cm)
a: Xét ΔABD vuông tại A và ΔHAD vuông tại H có
góc ADH chung
Do đó: ΔABD\(\sim\)ΔHAD
b: \(BD=\sqrt{3^2+4^2}=5\left(cm\right)\)
\(HD=\dfrac{AD^2}{BD}=1.8\left(cm\right)\)
a: Xét ΔABD vuông tại A và ΔDAK vuông tại D có
\(\widehat{ABD}=\widehat{DAK}\left(=90^0-\widehat{ADB}\right)\)
Do đó: ΔABD~ΔDAK
b: Ta có: ΔABD vuông tại A
=>\(AB^2+AD^2=BD^2\)
=>\(BD^2=12^2+5^2=169=13^2\)
=>BD=13(cm)
ΔABD~ΔDAK
=>\(\dfrac{BD}{AK}=\dfrac{AB}{DA}\)
=>\(\dfrac{13}{AK}=\dfrac{12}{5}\)
=>\(AK=13\cdot\dfrac{5}{12}=\dfrac{65}{12}\left(cm\right)\)