K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2021

13 tháng 12 2021

NV
30 tháng 12 2021

a.

Do M là trung điểm SC, N là trung điểm SA \(\Rightarrow MN\) là đường trung bình tam giác SAC

\(\Rightarrow MN||AC\)

Mà \(AC\in\left(ABCD\right)\Rightarrow MN||\left(ABCD\right)\)

Gọi O là giao điểm AC và BD \(\Rightarrow O=\left(SAC\right)\cap\left(SBD\right)\)

\(S=\left(SAC\right)\cap\left(SBD\right)\Rightarrow SO=\left(SAC\right)\cap\left(SBD\right)\)

b.

Trong mp (ABCD), kéo dài AB và CD cắt nhau tại E

Trong mp (SCD), nối EM cắt SD tại F

\(\Rightarrow F=SD\cap\left(MAB\right)\)

NV
30 tháng 12 2021

undefined

21 tháng 10 2023

a: Chọn mp(SAB) có chứa SA

\(AB\subset\left(SAB\right);AB\subset\left(ABCD\right)\)

Do đó: \(AB=\left(SAB\right)\cap\left(ABCD\right)\)

Ta có: SA cắt AB tại A

=>A là giao điểm của SA với mp(ABCD)

b: Gọi E là giao điểm của AB và CD trong mp(ABCD)

\(E\in AB\subset\left(SAB\right);E\in CD\subset\left(SCD\right)\)

=>\(E\in\left(SAB\right)\cap\left(SCD\right)\)

mà \(S\in\left(SAB\right)\cap\left(SCD\right)\)

nên \(\left(SAB\right)\cap\left(SCD\right)=SE\)

a: Trong mp(ABCD), Gọi giao của AC và BD là O

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà S thuộc (SAC) giao (SBD)

nên (SAC) giao (SBD)=SO

b:Trong mp(ABCD), Gọi giao của AB và CD là M

\(M\in AB\subset\left(SAB\right)\)

\(M\in CD\subset\left(SCD\right)\)

=>M thuộc (SAB) giao (SCD)

mà S thuộc (SAB) giao (SCD)

nên (SAB) giao (SCD)=SM

c: Trong mp(ABCD), gọi N là giao của AD với BC

\(N\in AD\subset\left(SAD\right);N\in BC\subset\left(SBC\right)\)

Do đó: \(N\in\left(SAD\right)\cap\left(SBC\right)\)

mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)

nên \(\left(SAD\right)\cap\left(SBC\right)=SN\)

a: \(SB\subset\left(SAB\right)\)

\(SB\subset\left(SBD\right)\)

Do đó: \(\left(SAB\right)\cap\left(SBD\right)=SB\)

b: \(F\in SB\subset\left(SAB\right);F\in\left(SDF\right)\)

Do đó: \(F\in\left(SAB\right)\cap\left(SDF\right)\)

mà \(S\in\left(SAB\right)\cap\left(SDF\right)\)

nên \(\left(SAB\right)\cap\left(SDF\right)=SF\)

c: \(F\in SB\subset\left(SBC\right);F\in\left(FCD\right)\)

\(\Leftrightarrow F\in\left(SBC\right)\cap\left(FCD\right)\)

mà \(C\in\left(CBS\right)\cap\left(FCD\right)\)

nên \(\left(FCD\right)\cap\left(SBC\right)=CF\)

3 tháng 10 2021

undefined

a, Gọi O là giao điểm của AC và BD

⇒ SO = (SAC) \(\cap\) (SBD)

b, (SAB) và (SCD) cùng đi qua điểm S và lần lượt chứa hai đường thẳng AB & CD, mà ta lại có AB // CD

⇒ (SAB) \(\cap\) (SCD) = Sx. trong đó Sx là đường thẳng đi qua S và song song với AB và CD

c, Trong (SAC) gọi K là giao điểm của SO và AM

⇒ AM \(\cap\) (SBD) = K

d, Trong (ABCD) gọi I = DN \(\cap\) BC

⇒ DN \(\cap\) (SBC) = I

a: Trong mp(ABCD), gọi N là giao điểm của AD và BC

\(N\in AD\subset\left(SAD\right);N\in BC\subset\left(SBC\right)\)

=>\(N\in\left(SAD\right)\cap\left(SBC\right)\)

mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)

nên \(\left(SAD\right)\cap\left(SBC\right)=SN\)

b: Gọi H là giao điểm của SG với CD

Xét ΔSCD có

G là trọng tâm

H là giao điểm của SG với DC

Do đó: H là trung điểm của DC

Chọn mp(SAH) có chứa MG

Trong mp(ABCD), gọi E là giao điểm của AH với BD

\(E\in AH\subset\left(SAH\right)\)

\(E\in BD\subset\left(SBD\right)\)

Do đó: \(E\in\left(SAH\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAH\right)\cap\left(SBD\right)\)

nên \(\left(SAH\right)\cap\left(SBD\right)=SE\)

Gọi K là giao điểm của MG với SE

=>K là giao điểm của MG với (SBD)

29 tháng 12 2023

a: \(G\in\left(SCD\right);G\in\left(GAB\right)\)

Do đó: \(G\in\left(SCD\right)\cap\left(GAB\right)\)

Xét (SCD) và (GAB) có

\(G\in\left(SCD\right)\cap\left(GAB\right)\)

CD//AB

Do đó: (SCD) giao (GAB)=xy, xy đi qua G và xy//AB//CD