Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha ^^
a) Ta có: AB=CD (gt), mà E,F lần lượt và trung điểm của AB và CD.
=> EA=EB=FD=FC
Ta có: AB song song => EA song song FC
Ta có EA=FC và EA song song FC
=> AECF là hình bình hành.
Tương tự chứng minh BEDF là hình bình hành.
b) Kẻ EF.
Ta có: EA=FD (cmt); AB song song CD => EA song song FD
=> AEFD là hình bình hành
Tương tự chứng minh EBCF là hình hình hành.
Ta có: E là trung điểm AB
K là trung điểm của BF (hai đường chéo EC và BF của hình bình hành cắt nhau tại trung điểm mỗi đường)
=> KE là đường trung bình của tam giác ABF
=> KE song song AF và KE=1/2 AF (1)
Ta có hai đường chéo AF và DE của hình bình hành AEFD => I là trung điểm của AF => IF=1/2 AF (2)
Từ (1) và (2) suy ra IF=KE và KE song song AF
=> EIFK là hình bình hành
c) Xét hình bình hành ABCD có AC và BD là hai đường chéo => AC và BD cắt nhau tại trung điểm mỗi đường (1)
Xét hình bình hành AEFC có hai đường chéo là EF và AC => EF và AC cắt nhau tại trung điểm mỗi đường (2)
Từ (1) và (2) suy ra AC, BD, EF cùng đi qua một diểm.
d) Giả sử EIFK là hình vuông.
=> IF = IE
Mà IF=IA, IE=ID (hai đường chéo AF và DE cắt nhau tại trung điểm mỗi đường)
=> IE=ID=IA=IF
=> AF=DE
Hình bình hành AEFD có hai đường chéo bằng nhau => là hình chữ nhật.
=> DAE= 90 độ
Ta có hình bình hành ABCD có một góc vuông => là hình chữ nhật.
Vậy để EIFK là hình vuông thì ABCD phải là hình chữ nhật.
e) Gọi giao điểm của AC và DB là O
Ta có DO là đường trung tuyến xuất phát từ đỉnh D của tam giác DAC
AF là đường trung tuyến xuất phát từ đỉnh A của tam giác DAC
DO và AF cắt nhau tại M
=> M là trọng tâm của tam giác DAC
=> DM=2/3 DO, MO=1/3 DO (1)
Tương tự chứng minh NB=2/3 BO và NO=1/3 BO (2)
Ta có OB=OD (3)
Từ (1), (2) và (3) suy ra DM=NB
Ta có MN=MO+NO=1/3 DO+ 1/3 BO= 2/3 DO = 2/3 BO
=> DM=MN=NB
I A B D C E F K
Gọi I là trung điểm của AB.
Giả sử đường thẳng IE cắt CD tại K1
Có: \(\frac{IA}{K_1D}=\frac{EI}{EK_1}=\frac{IB}{K_1C}\) (hệ quả định lý Ta lét)
mà IA = IB (gt) nên K1D = K1C, do đó K1 là trung điểm CD
Giả sử đường thẳng IF cắt CD tại K2
Có: \(\frac{IA}{K_2C}=\frac{FI}{FK_2}=\frac{IB}{K_2D}\) (hệ quả định lý Ta lét)
mà IA = IB (gt) nên K2C = K2D, do đó K2 là trung điểm CD
do IE và IF cùng đi qua trung điểm K của CD nên hai đường thẳng này trùng nhau
Vậy ta có đpcm
Bài 1:
A B C D M N P Q E F
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
TK
a, Gọi O là giao điểm hai đường chéo của hình bình hành ABCD
=> O là trung điểm của AC và BD
hay OA = OC và OD = OB
Xét tam giác ADC có:
AF là đường trung tuyến ( F là trung điểm của DC)
DO là đường trung tuyến ( OA=OC)
Hai đường trung tuyến này cắt nhau tại M
=> M là trọng tâm của tam giác ADC
Tương tự, xét tam giác ABC có:
AE là đường trung tuyến ( E là trung điểm của BC)
BO là đường trung tuyến ( OA=OC)
Hai đường trung tuyến cắt nhau tại N
=> N là trọng tâm của tam giác ABC
b,
Nối M với C ; N với C
Có OM = 1313 OD
ON = 1313 OB
mà OD = OB (cm câu a)
=> OM = ON
Xét tứ giác ANCM có:
OM = ON (cmt)
OA = OC (cm câu a)
=> tứ giác ANCM là hình bình hành
=> AM//CN hay AF//CN
Xét ΔΔ DNC có:
DF=CF (gt)
MF//CN (AF//CN)
=> DM = MN (1)
Gọi I là giao điểm của EF và MC
Xét ΔΔ BCD có:
DF = CF (gt)
BE = CE (gt)
=> EF là đường trung bình của ΔΔ BCD
=> EF//BD
hay EI//BD
Xét ΔΔ BMC có:
EI//BM ( M∈∈ BD)
BE = CE (gt)
=> MN = NB (2)
Hầy chỗ này bạn viết đề sai nữa rồi! phải là DM = MN = NB hoặc ngược lại
Từ (1) và (2) suy ra :
DM = MN =NB (đpcm)
a: Gọi giao của AC và BD là O
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét ΔADC có
AN,DO là trung tuyến
AN cắt DO tại F
Do đó: F là trọng tâm cuả ΔADC
Xét ΔABC có
AM,BO là trung tuyến
AM cắt BO tại E
Do đó: E là trọng tâm của ΔABC
b: E là trọng tâm của ΔABC
=>\(BE=\dfrac{2}{3}BO=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot BD=\dfrac{1}{3}BD\)
F là trọng tâm của ΔDAC
=>\(DF=\dfrac{2}{3}DO=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot BD=\dfrac{1}{3}\cdot BD\)
DF+FE+EB=DB
=>\(FE=DB-\dfrac{1}{3}DB-\dfrac{1}{3}DB=\dfrac{1}{3}DB\)
=>EB=EF=DF
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
Xét ΔDNC có
F là trung điểm của DC
FM//NC
Do đó: M là trung điểm của DN
Suy ra: DM=MN(1)
Xét ΔABM có
E là trung điểm của AB
EN//AM
Do đó: N là trung điểm của BM
Suy ra: BN=NM(2)
Từ (1) và (2) suy ra DM=MN=NB