Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: Xét ΔAEM có
E là trung điểm của AB
EN//AM
Do đó; N là trung điểm của BM
=>BN=NM(1)
Xét ΔDNC có
F là trung điểm của DC
FM//NC
Do đó: M là trung điểm của DN
=>DM=MN(2)
Từ (1) và (2) suy ra DM=MN=NB
c: Xét ΔADM và ΔCBN có
AD=CB
\(\widehat{ADM}=\widehat{CBN}\)
DM=BN
Do đó: ΔADM=ΔCBN
Suy ra: AM=CN
mà EN=AM/2
và MF=CN/2
nên EN=MF
Xét tứ giác MENF có
NE//MF
NE=MF
Do đó: MENF là hình bình hành
Bài làm
a) Vì ABCD là hình bình hành
=> AB = DC (1)
Mà I là trung điểm AB => AI = IB = 1/2AB (2)
Và K là trung điểm AC => DK = KC = 1/2DC (3)
Từ (1), (2) và (3) => AI = IB = DK = KC
Vì AB // DC (vì ABCD là hình bình hành)
=> AI // KC
Xét tứ giác AICK có:
AI // KC (cmt)
AI = KC (cmt)
=> AICK là hình bình hành.
b) Xét tam giác DCF có:
KE // FC (Do AK // IC vì AICK là hình bình hành)
K là tủng điểm DC
=> KE là đường trung bình.
=> E là trung đểm DF
=> DE = EF (4)
Xét tam giác BAE có:
IF // AE (Vì AK // IF do AICK là hình bình hành)
I là trung điểm AB
=> IF là đường trung bình.
=> F là trung điểm EB
=> EF = FB (5)
Từ (4) và (5) => DE = EF = FB.
c) Vì AB // DC
=> \(\widehat{ABD}=\widehat{BDC}\)(so le trong)
Xét tam giác BIF và tam giác DKE có:
IB = DK (cmt)
\(\widehat{ABD}=\widehat{BDC}\)(cmt)
DE = FB (cmt)
=> Tam giác BIF = tam giác DKE (c.g.c)
=> IF = EK (hai cạnh tương ứng)
Xét tứ giác IFKC có:
IF = EK (cmt)
IF // EK (Do IC // AK)
=> IFKC là hình bình hành.
Còn câu d và e thì xin kiếu. Vì hình rối + câu cuối mình không biết làm ^^"
a: Xét tứ giác DEBF có
FD//BE
FD=BE
Do đó: DEBF là hình bình hành
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
Xét ΔDNC có
F là trung điểm của DC
FM//NC
Do đó: M là trung điểm của DN
Suy ra: DM=MN(1)
Xét ΔABM có
E là trung điểm của AB
EN//AM
Do đó: N là trung điểm của BM
Suy ra: BN=NM(2)
Từ (1) và (2) suy ra DM=MN=NB
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
Bạn tự vẽ hình nha ^^
a) Ta có: AB=CD (gt), mà E,F lần lượt và trung điểm của AB và CD.
=> EA=EB=FD=FC
Ta có: AB song song => EA song song FC
Ta có EA=FC và EA song song FC
=> AECF là hình bình hành.
Tương tự chứng minh BEDF là hình bình hành.
b) Kẻ EF.
Ta có: EA=FD (cmt); AB song song CD => EA song song FD
=> AEFD là hình bình hành
Tương tự chứng minh EBCF là hình hình hành.
Ta có: E là trung điểm AB
K là trung điểm của BF (hai đường chéo EC và BF của hình bình hành cắt nhau tại trung điểm mỗi đường)
=> KE là đường trung bình của tam giác ABF
=> KE song song AF và KE=1/2 AF (1)
Ta có hai đường chéo AF và DE của hình bình hành AEFD => I là trung điểm của AF => IF=1/2 AF (2)
Từ (1) và (2) suy ra IF=KE và KE song song AF
=> EIFK là hình bình hành
c) Xét hình bình hành ABCD có AC và BD là hai đường chéo => AC và BD cắt nhau tại trung điểm mỗi đường (1)
Xét hình bình hành AEFC có hai đường chéo là EF và AC => EF và AC cắt nhau tại trung điểm mỗi đường (2)
Từ (1) và (2) suy ra AC, BD, EF cùng đi qua một diểm.
d) Giả sử EIFK là hình vuông.
=> IF = IE
Mà IF=IA, IE=ID (hai đường chéo AF và DE cắt nhau tại trung điểm mỗi đường)
=> IE=ID=IA=IF
=> AF=DE
Hình bình hành AEFD có hai đường chéo bằng nhau => là hình chữ nhật.
=> DAE= 90 độ
Ta có hình bình hành ABCD có một góc vuông => là hình chữ nhật.
Vậy để EIFK là hình vuông thì ABCD phải là hình chữ nhật.
e) Gọi giao điểm của AC và DB là O
Ta có DO là đường trung tuyến xuất phát từ đỉnh D của tam giác DAC
AF là đường trung tuyến xuất phát từ đỉnh A của tam giác DAC
DO và AF cắt nhau tại M
=> M là trọng tâm của tam giác DAC
=> DM=2/3 DO, MO=1/3 DO (1)
Tương tự chứng minh NB=2/3 BO và NO=1/3 BO (2)
Ta có OB=OD (3)
Từ (1), (2) và (3) suy ra DM=NB
Ta có MN=MO+NO=1/3 DO+ 1/3 BO= 2/3 DO = 2/3 BO
=> DM=MN=NB