Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho hình bình hành ABCD có góc A nhọn (AB<AD) Tia phân giác BAD cắt BC tại M và cắt DC tại N Gọi K là tâm đường tròn ngoại tiếp tam giác MCN
a) C/m: DN=BC và CK vuông góc MN
Do ∡A nhọn và AB < AD nên tia phân giác ∡A cắt
BC tại M∊đoạn BC và N ngoài đoạn DC ( C nằm giữa D,N)
∡BAM = ∡MAD (AM là pg) và ∡BAN = ∡DNA (sl trong)
→∡DAN = ∡DNA → ∆ADN cân đỉnh D → DN = AD = BC
Xét ∆MCN có ∡DAN = ∡DNA ( cm trên) ,
∡DAN = ∡CMN ( đồng vị) →∡CNM = ∡CMN
→ ∆MCN cân đỉnh C → K thuộc trung trực MN
→ CK vuông góc MN
b) C/m BKCD nội tiếp
Gọi E là trung điểm MC, F là trung điểm CN ta có :
KE vuông góc MC, KF vuông góc CN , BE = DF
xét ∆KEC và ∆KFC là 2 ∆ vuông có CK chung,
∡ECK = ∡FCK ( ∆MCN tại C và CK là trung trực, pg...)
→ ∆KEC = ∆KFC → EK = FK
xét hai tam giác vuông ∆KEB và ∆KFD có BE = DF (cm trên)
KE = KF (cm trên) → ∆KEB = ∆KFD →∡KBE = ∡KDF
hay ∡KBC = ∡KDC . B và D cùng phía so với đường thẳng
CK mà ∡KBC = ∡KDC → B, C, D, K thuộc đường tròn
( quỹ tích cung chứa góc ) → BKCD nội tiếp
bức tranh được UNESCO công nhận là bức tranh đẹp nhất thế giới. Có 1 0 2
A B C D O E F I
a) Ta thấy \(\Delta\)CEF có CO vừa là phân giác ^ECF, vừa vuông góc với EF, suy ra \(\Delta\)CEF cân tại C
Vì tứ giác ABCD là hình bình hành nên DC = AB = BE (1)
Ta có ^BCO = ^DCO suy ra (OB = (OD hay OB = OD (2); lại có ^ODC = ^OBE (Tứ giác BCDO nội tiếp) (3)
Từ (1);(2);(3) suy ra \(\Delta\)OBE = \(\Delta\)ODC (c.g.c) (đpcm).
b) Từ câu a ta có OC = OE. Tương tự OC = OF. Vậy O là tâm ngoại tiếp \(\Delta\)CEF (đpcm).
c) Dễ có \(\Delta\)OIB ~ \(\Delta\)DIC suy ra IB.DC = IC.OB hay IB.BE = IC.OB. Tương tự ID.DF = IC.OD
Từ đó IB.BE = ID.DF (Vì OB = OD). Mà EI = FI (Vì I thuộc trung trực EF) nên IB.BE.EI = ID.DF.FI (đpcm).
A B C D M N P Q K L O T
Qua P dựng đường thẳng song song với CM, đường thẳng này cắt BD tại T.
Chú ý rằng tứ giác ABCD là hình bình hành nên PD // CB và CD // BQ
Từ đó ta có 2 cặp tam giác đồng dạng theo TH g.g: \(\Delta\)BCQ ~ \(\Delta\)DPC; \(\Delta\)CBM ~ \(\Delta\)PDT
Suy ra \(\frac{DT}{BM}=\frac{PD}{CB}=\frac{CD}{QB}\). Từ đây \(\Delta\)DTC ~ \(\Delta\)BMQ (c.g.c), suy ra CT // QM (1)
Mặt khác, do PQ là tiếp tuyến tại C của (O) nên ^PCN = ^CMN = ^PTN. Suy ra tứ giác CTNP nội tiếp (2)
Từ (1) và (2) suy ra tứ giác MQPN nội tiếp (3) . Từ tứ giác CTNP nội tiếp ta có ^PCN = ^PTC = ^QMC.
Hay ^PNL = ^QMK. Kết hợp với (3) suy ra tứ giác MKLN nội tiếp. Áp dụng ĐL Reim ta thu được KL // PQ
Mà OC vuông góc với PQ nên OC cũng vuông góc với KL (đpcm).
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)