K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(\widehat{ADE}=\dfrac{\widehat{ADC}}{2}\)

\(\widehat{CBF}=\dfrac{\widehat{CBA}}{2}\)

mà \(\widehat{ADC}=\widehat{CBA}\)

nên \(\widehat{ADE}=\widehat{CBF}\)

Xét ΔADE và ΔCBF có 

\(\widehat{ADE}=\widehat{CBF}\)

AD=BC

\(\widehat{DAE}=\widehat{BCF}\)

Do đó: ΔADE=ΔCBF

Suy ra: AE=CF

Ta có: AE+EB=AB

CF+DF=CD

mà AB=CD

và AE=CF

nên EB=DF

Xét tứ giác DEBF có 

EB//DF

EB=DF

Do đó: DEBF là hình bình hành

Suy ra: DE//BF

d: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

e: Ta có: ABCD là hình bình hành

nên Hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường\(\left(1\right)\)

Ta có: EBFD là hình bình hành

nên Hai đường chéo EF và BD cắt nhau tại trung điểm của mỗi đường\(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra AC,BD,EF đồng quy

4 tháng 7 2023

a) Ta thấy \(\widehat{AED}=\widehat{EDC}=\widehat{ADE}\) nên tam giác ADE cân tại A. Hoàn toàn tương tự thì tam giác CBF cân tại C. 

 Mặt khác, do tứ giác ABCD là hình bình hành nên \(\widehat{A}=\widehat{C},\widehat{B}=\widehat{D}\). Do đó \(\dfrac{\widehat{B}}{2}=\dfrac{\widehat{D}}{2}\) hay \(\widehat{CBF}=\widehat{ADE}\). Kết hợp với \(\widehat{A}=\widehat{C}\) thì suy ra \(\Delta ADE~\Delta CBF\left(g.g\right)\). Lại có \(\dfrac{AD}{CB}=1\) (do tứ giác ABCD là hình bình hành), suy ra \(\Delta ADE=\Delta CBF\) (2 tam giác đồng dạng có tỉ số đồng dạng bằng 1 thì 2 tam giác đó bằng nhau), ta có đpcm.

 b) Ta thấy \(\widehat{AED}=\widehat{ADE}=\widehat{CBF}=\widehat{ABF}\) nên DE//BF. Lại có BE//DF (do tứ giác ABCD là hình bình hành) nên tứ giác DEBF cũng là hình bình hành (các cặp cạnh đối song song).

4 tháng 7 2023

A B C D E F

a/

Xét tg ADE có

\(\widehat{ADE}=\widehat{CDE}\) (gt) (1)

\(\widehat{AED}=\widehat{CDE}\) (góc so le trong) (1)

Từ (1) và (2) => \(\widehat{ADE}=\widehat{AED}\) => tg ADE là tg cân tại A

=> AD=AE (3)

Xét tg CBF có

\(\widehat{CBF}=\widehat{ABF}\) (gt) (4)

\(\widehat{CFB}=\widehat{ABF}\) (góc so le trong) (5)

Từ (4) và (5) => \(\widehat{CBF}=\widehat{CFB}\)  => tg CBF cân tại C

=> CB=CF (6)

Ta có

AD=CB (cạnh đối hình bình hành) (7)

Từ (3) (6) (7) => AD=AE=CB=CF

Mà \(\widehat{DAE}=\widehat{BCF}\) (góc đối hình bình hành)

=> tg ADE = tg CBF (c.g.c)

=> tg ADE và tg CBF là những tg cân bằng nhau

b/

tg ADE = tg CBF (cmt) \(\Rightarrow\widehat{BFC}=\widehat{ADE}\)

Mà \(\widehat{EDC}=\widehat{ADE}\) (gt)

\(\Rightarrow\widehat{BFC}=\widehat{EDC}\)  Hai góc này ở vị trí đồng vị => DE//BF (8)

Ta có

AB//CD (cạnh đối hình bình hành) => BE//DF (9)

Từ (8) (9) => DEBF là hình bình hành (tứ giác có các cặp cạnh đối // với nhau là hình bình hành)

 

 

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Vì \(DE\), \(BF\) là phân giác (gt)

Suy ra \(\widehat {{\rm{ADE}}} = \widehat {{\rm{EDC}}} = \frac{{\widehat {ADC}}}{2}\); \(\widehat {{\rm{EBF}}} = \widehat {{\rm{CBF}}} = \frac{{\widehat {ABC}}}{2}\) (1)

Vì \(ABCD\) là hình bình hành (gt)

Suy ra \(AB\) // \(CD\) và \(\widehat {ADC} = \widehat {ABC}\) (2)

Suy ra \(\widehat {{\rm{AED}}} = \widehat {{\rm{EDC}}}\) (so le trong) (3)

Từ (1), (2), (3) suy ra \(\widehat {AED} = \widehat {ABF}\)

Mà hai góc ở vị trí đồng vị

Suy ra \(DE\) // \(BF\)

b) Xét tứ giác \(DEBF\) ta có:

\(DE\) // \(BF\) (cmt)

\(BE\) // \(DF\) (do \(AB\) // \(CD\))

Suy ra \(DEBF\) là hình bình hành

21 tháng 4 2017

Hỏi đáp Toán

17 tháng 10 2018

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

17 tháng 10 2018

Mk can gap bài này các bạn giúp mình nhé

5 tháng 10 2015

bạn vẽ hình nhé

a) ta có ABCD là hbh nên góc D = góc B

=> góc EDF = 1/2 góc D = 1/ góc B = góc EBF 

ta lại có:  góc EBF bù góc BFD (là hai góc trong cùng phía của hai đường thẳng // - AB//DC)

nên góc EDF cũng bù với góc BFD suy ra DE // DF ( có  hai góc trong cùng phia bù nhau)

b) xét tư giác DEBF có

BE// DF (gt)

DE// BF (cmt)

vậy DEBF là hình bình hành

10 tháng 8 2018

có bn nào bít ve hình ko

22 tháng 10 2023

Bài 2:

AK=AB/2

CI=CD/2

mà AB=CD

nên AK=CI

Xét tứ giác AKCI có

AK//CI

AK=CI

Do đó: AKCI là hình bình hành

=>AC cắt KI tại trung điểm của mỗi đường(1)

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AC,KI,BD đồng quy

Bài 1:

a: \(\widehat{ADE}=\widehat{EDF}=\dfrac{1}{2}\cdot\widehat{ADC}\)

\(\widehat{ABF}=\widehat{CBF}=\dfrac{1}{2}\cdot\widehat{ABC}\)

mà \(\widehat{ADC}=\widehat{ABC}\)

nên \(\widehat{ADE}=\widehat{EDF}=\widehat{ABF}=\widehat{CBF}\)

Xét ΔEAD và ΔFCB có

\(\widehat{A}=\widehat{C}\)

AD=CB

\(\widehat{EDA}=\widehat{FBC}\)

Do đó: ΔEAD=ΔFCB

=>\(\widehat{AED}=\widehat{CFB}\)

=>\(\widehat{EDF}=\widehat{CFB}\)

mà hai góc này đồng vị

nên DE//BF

b: Xét tứ giác DEBF có

DE//BF

BE//DF

Do đó: DEBF là hình bình hành