K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

Áp dụng định lí Pythagore trong tam giác AHD vuông tại H có: \(A{{\rm{D}}^2} = A{H^2} + H{{\rm{D}}^2}\) (1)

Áp dụng định lí Pythagore trong tam giác AHC vuông tại H có: \(A{C^2} = A{H^2} + H{C^2}\) (2)

Áp dụng định lí Pythagore trong tam giác AHE vuông tại H có: \(A{E^2} = A{H^2} + H{E^2}\) (3)

Vì HE > HC > HD suy ra \(H{E^2} > H{C^2} > H{{\rm{D}}^2}\)(4)

Từ (1), (2), (3), (4) suy ra: \(A{{\rm{E}}^2} > A{C^2} > A{{\rm{D}}^2} \Rightarrow A{\rm{E}} > AC > A{\rm{D}}\)

Vậy đoạn AE là lớn nhất, đoạn AD là nhỏ nhất.

10 tháng 9 2023

\(x^2=1^2+1^2\left(pythagore\right)\\ \Rightarrow x=\sqrt{2}\\ \sqrt{5}^2=1^2+y^2\left(pythagore\right)\\ \Rightarrow y=\sqrt{4}=2\)

10 tháng 9 2023

a) \(x^2=1^2+1^2=2\Rightarrow x=\sqrt[]{2}\)

b) \(\left(\sqrt[]{5}\right)^2=y^2+1^2\Rightarrow y^2=5-1=4\Rightarrow y=2\)

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

Xét \(\Delta ABE\) và \(\Delta ACD\) có:

\(\widehat {EBA} = \widehat {ACD}\) (giả thuyết)

\(\widehat {BAE} = \widehat {CAD} = 90^\circ \)

Do đó, \(\Delta ABE\backsim\Delta ACD\) (g.g)

Vì \(\Delta ABE\backsim\Delta ACD\) nên \(\frac{{AB}}{{AC}} = \frac{{EB}}{{CD}}\) (các cặp cạnh tương ứng)

Thay số, \(\frac{{20}}{{AC}} = \frac{{25}}{{15}} \Rightarrow AC = \frac{{20.15}}{{25}} = 12\)cm.

Áp dụng định lí Py – ta – go cho \(\Delta ABE\) vuông tại \(A\) ta có:

\(B{E^2} = A{E^2} + A{B^2} \Leftrightarrow A{E^2} = B{E^2} - A{B^2} = {25^2} - {20^2} = 225 \Rightarrow AE = \sqrt {225}  = 15\)cm.

Độ dài \(CE\) là:

15 – 12 = 3cm

Vậy \(CE = 3cm.\)

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

Trung đoạn là SI => C là phương án đúng

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

Cặp tam giác vuông ở hình d. Vì cạnh huyền và một cạnh góc vuông của tam giác này tỉ lệ với cạnh huyền và một cạnh góc vuông của tam giác vuông kia 

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

- Đỉnh: S

- Cạnh bên: SD, SE, SF

- Mặt bên: SDE, SEF, SDF

- Mặt đáy: DEF

- Đường cao: SO

- Một trung đoạn: SI

QT
Quoc Tran Anh Le
Giáo viên
14 tháng 1 2024

- Đỉnh: S

- Cạnh bên: SE, SF, SG, SH

- Mặt bên: SEF, SFG, SGH. SEH

- Mặt đáy: EFGH

- Đường cao: SI

- Một trung đoạn: SK

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

Các cặp tam giác vuông đồng dạng:

\(\begin{array}{l}\Delta ABC \backsim \Delta X{\rm{Z}}Y(\widehat A = \widehat X;\widehat B = \widehat Z)\\\Delta E{\rm{D}}F \backsim \Delta KGH\left( {\frac{{E{\rm{D}}}}{{KG}} = \frac{{DF}}{{GF}};\widehat {E{\rm{D}}F} = \widehat {KGH}} \right)\end{array}\)

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

-  ΔCNM ~ ΔCAB (vì MN // AB) (1)

- ΔMPB ~ ΔCAB (vì MP // AC) (2)

- Từ (1) và (2) => ΔCNM ~ ΔMPB 

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

Cặp hình lục giác đều và cặp hình vuông là đồng dạng phối cảnh