Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Thay m=3 vào hpt ta có :
\(\left\{{}\begin{matrix}2x+3y=3\\-5x+y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=3\\-15x+3y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=3\\17x=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{4}{17}\\y=\frac{43}{51}\end{matrix}\right.\)
\(\hept{\begin{cases}x+y=2\\2x+my=5\end{cases}}\)
a, Với \(m=3\) ta có:
\(\hept{\begin{cases}x+y=2\\2x+3y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2-y\\2\left(2-y\right)+3y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
b, \(\hept{\begin{cases}x+y=2\\2x+my=5\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+2y=4\left(1\right)\\2x+my=5\left(2\right)\end{cases}}\)
Ta lấy \(\left(1\right)-\left(2\right)\) ta được: \(y\left(2-m\right)=-1\)
Với \(m\ne2\) hpt có nghiệm duy nhất là: \(\hept{\begin{cases}y=-\frac{1}{2-m}\\x=2-\frac{-1}{2-m}=\frac{5-2m}{2-m}\end{cases}}\)
Ta có: \(\hept{\begin{cases}y>0\\x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-\frac{1}{2-m}>0\\\frac{5-2m}{2-m}< 0\end{cases}}\) \(\Leftrightarrow2-m< 0\) hoặc \(\orbr{\begin{cases}5-2m>0.hoac.2-m< 0\\5-2m< 0.hoac.2-m>0\end{cases}}\)
\(\Leftrightarrow m>2\) hoặc \(\orbr{\begin{cases}2< m< \frac{5}{2}\\m< 2,m>\frac{5}{2}\end{cases}}\Leftrightarrow2< m< \frac{5}{2}\)
Vậy .............
Bạn Băng !
<=> \(2-m< 0\) và \(\orbr{\begin{cases}...\\...\end{cases}}\)
( không phải là " hoặc " )
\(2)mx^2-2\left(m-1\right)x+m-1=0\)
Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)
\(\Leftrightarrow-4m+4=0\)
\(\Leftrightarrow m=1\)
Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)
=>10x+15y=5m và -10x+2y=-2
=>17y=5m-2 và -5x+y=-1
=>y=5/17m-2/17 và 5x-y=1
=>y=5/17m-2/17 và 5x=1+y=5/17m+15/17
=>y=5/17m-2/17 và x=1/17m+5/17
x>0; y>0
=>5m-2>0 và m+5>0
=>m>2/5
a) Với \(m=0\): hệ phương trình đã cho tương đương với:
\(\hept{\begin{cases}4y=10\\x=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=\frac{5}{2}\end{cases}}\)
Với \(m\ne0\): hệ có nghiệm duy nhất khi:
\(\frac{m}{1}\ne\frac{4}{m}\Leftrightarrow m\ne\pm2\)
Hệ có vô số nghiệm khi:
\(\frac{m}{1}=\frac{4}{m}=\frac{10-m}{4}\Leftrightarrow m=2\)
Hệ vô nghiệm khi:
\(\frac{m}{1}=\frac{4}{m}\ne\frac{10-m}{4}\Leftrightarrow m=-2\).
b) với \(m\ne\pm2\)hệ có nghiệm duy nhất.
\(\hept{\begin{cases}mx+4y=10-m\\x+my=4\end{cases}}\Leftrightarrow\hept{\begin{cases}m\left(4-my\right)+4y=10-m\\x=4-my\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(4-m^2\right)y=10-5m\\x=4-my\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{8-m}{m+2}\\y=\frac{5}{m+2}\end{cases}}\)
\(\hept{\begin{cases}\frac{8-m}{m+2}>0\\\frac{5}{m+2}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}8-m>0\\m+2>0\end{cases}}\Leftrightarrow-2< m< 8\)
c) \(\hept{\begin{cases}\frac{8-m}{m+2}=\frac{10-m-2}{m+2}=\frac{10}{m+2}-1\inℤ\\\frac{5}{m+2}\inℤ\end{cases}}\Leftrightarrow\frac{5}{m+2}\inℤ\)
\(\frac{5}{m+2}=t\inℤ\Rightarrow m=\frac{5}{t}-2\)
Để \(x,y\)dương thì \(-2< \frac{5}{t}-2< 8\Leftrightarrow0< \frac{5}{t}< 10\Rightarrow t\ge1\)
Vậy \(m=\frac{5}{t}-2\)với \(t\)nguyên dương thì thỏa mãn ycbt.
hệ pt <=> 2x+3y = 4
2x-2y = 2m
<=> 5y = 4-2m
x-y = m
<=> y = 4-2m/5
x = 3m+4/5
a, Với m = 1 thì : x = 7/5 ; y = 2/5
b, Để hệ có nghiệm x>0 ; y> 0 thì :
4-2m/5 > 0 và 3m+4/5 > 0
<=> 4-2m > 0 và 3m+4 > 0
<=> m < 2 và m > -4/3
<=> -4/3 < m < 2
Tk mk nha