Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình đường thẳng qua O và song song AB có dạng: \(x-y=0\)
\(\Rightarrow\) Tọa độ M là nghiệm của hệ: \(\left\{{}\begin{matrix}x+3y-6=0\\x-y=0\end{matrix}\right.\) \(\Rightarrow M\left(\frac{3}{2};\frac{3}{2}\right)\)
Phương trình đường thẳng BC qua M, nhận \(\left(1;1\right)\) là 1 vtpt có dạng:
\(1\left(x-\frac{3}{2}\right)+1\left(y-\frac{3}{2}\right)=0\Leftrightarrow x+y-3=0\)
Tọa độ B là nghiệm của hệ: \(\left\{{}\begin{matrix}x-y+5=0\\x+y-3=0\end{matrix}\right.\) \(\Rightarrow B\)
M là trung điểm BC \(\Rightarrow\) tọa độ C
O là trung điểm AC \(\Rightarrow\) tọa độ A
O là trung điểm BD \(\Rightarrow\) tọa độ D
\(\left\{{}\begin{matrix}x=2t\\y=1-3t\end{matrix}\right.\) \(\Rightarrow d\) nhận \(\left(2;-3\right)\) là 1 vtcp
Khi đó \(k\left(2;-3\right)\) với \(k\ne0\) cũng là vtcp của d
Ví dụ lấy \(k=2\) ta được 1 vtcp khác là \(\left(4;-6\right)\)
Từ đó suy ra được 2 vtpt là \(\left(3;2\right)\) và \(\left(6;4\right)\)
b/ Cho \(t=1\Rightarrow A\left(2;-2\right)\)
Cho \(t=0\Rightarrow B\left(0;1\right)\)
Đường tròn (C) tâm \(I\left(4;3\right)\) bán kính \(R=2\)
Gọi \(A\left(2a+6;a\right)\) và \(C\left(0;c\right)\)
I là trung điểm AC \(\Rightarrow\left\{{}\begin{matrix}2a+6=8\\a+c=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\c=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A\left(8;1\right)\\C\left(0;5\right)\end{matrix}\right.\)
\(\overrightarrow{AC}=\left(-8;4\right)=-4\left(2;-1\right)\)
\(\Rightarrow\) Đường thẳng BD nhận \(\left(2;-1\right)\) là 1 vtpt
Phương trình BD: \(2\left(x-4\right)-1\left(y-3\right)=0\Leftrightarrow2x-y-5=0\)
Gọi pt AB có dạng \(a\left(x-8\right)+b\left(y-1\right)=0\Leftrightarrow ax+by-8a-b=0\)
AB là tiếp tuyến của (C) \(\Rightarrow d\left(I;AB\right)=R\)
\(\Rightarrow\frac{\left|4a+3b-8a-b\right|}{\sqrt{a^2+b^2}}=2\Leftrightarrow\left|2a-b\right|=\sqrt{a^2+b^2}\)
\(\Leftrightarrow4a^2-4ab+b^2=a^2+b^2\Leftrightarrow3a^2-4ab=0\)
\(\Rightarrow\left[{}\begin{matrix}a=0\\3a=4b\end{matrix}\right.\) chọn \(a=4\Rightarrow b=3\)
Có 2 đường thẳng AB thỏa mãn: \(\left[{}\begin{matrix}y-1=0\\4x+3y-35=0\end{matrix}\right.\)
Tọa độ B là giao điểm AB và BD \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=1\\2x-y-5=0\end{matrix}\right.\\\left\{{}\begin{matrix}4x+3y-35=0\\2x-y-5=0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}B\left(3;1\right)\\B\left(5;5\right)\end{matrix}\right.\)