Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Đường tròn (C) có tâm I(4; -3) , bán kính R= 2
Tọa độ của tâm I( 4; -3) thỏa phương trình d: x+y-1= 0 . Vậy
Vậy AI là một đường chéo của hình vuông ngoại tiếp đường tròn, có bán kính R= 2.
=> 2 đường thẳng x = 2 và x = 6 là 2 tiếp tuyến của (C) .
+ Nếu A là giao điểm các đường d và x= 2 thì A( 2; -1)
+ Nếu A là giao điểm các đường (d) và x= 6 thì A( 6; -5).
B A K H C E I D
Ta có \(\widehat{AHC}=\widehat{AEC}=90^0\) nên 4 điểm A, H, C, E cùng thuộc đường tròn đường kính AC.
Gọi I là giao điểm của AC và BD
Ta có \(\widehat{HIE}=2\widehat{HAE}=2\left(180^0-\widehat{BCD}\right)\)
Các tứ giác AKED, AKHB nội tiếp nên \(\widehat{EKD}=\widehat{EAD}\) và \(\widehat{BKH}=\widehat{BAH}\)
Do đó \(\widehat{HKE}=180^0-\widehat{AKD}-\overrightarrow{BKH}=180^0-\overrightarrow{EAD}-\overrightarrow{BAH}=2\overrightarrow{HAE}=2\left(180^0-\overrightarrow{BCD}\right)=\overrightarrow{HIE}\)
Vậy tứ giác HKIE nội tiếp. Do đó I thuộc đường tròn (C) ngoại tiếp tam giác HKE
- Gọi \(C\left(c;c-3\right)\in d\left(c>0\right)\Rightarrow I\left(\frac{c-2}{2};\frac{c-4}{2}\right)\)
Do I thuộc (C) nên có phương trình :
\(c^2-c-2=0\Leftrightarrow c=2\) V c=-1 (loại c=-1) Suy ra \(C\left(2;-1\right);I\left(0;-1\right)\)
- Điểm E, H nằm trên đường tròn đường kính AC và đường tròn (C) nên tọa độ thỏa mãn hệ phương trình :
\(\begin{cases}x^2+y^2+x+4y+3=0\\x^2+\left(y+1\right)^2=4\end{cases}\) \(\Leftrightarrow\begin{cases}x=0;y=-3\\x=-\frac{8}{5};y=-\frac{11}{2}\end{cases}\)
- Vì H có hoành độ âm nên \(H\left(-\frac{8}{5};-\frac{11}{5}\right);E\left(0;-3\right)\) Suy ra \(AB:x-y+1=0;BC:x-3y-5=0\)
Tọa độ B thỏa mãn \(\begin{cases}x-y+1=0\\x-3y-5=0\end{cases}\) \(\Leftrightarrow B\left(-4;-3\right)\Rightarrow\overrightarrow{BA}=\left(2;2\right);\overrightarrow{BC}=\left(6;2\right)\Rightarrow\overrightarrow{BA}.\overrightarrow{BC}=16>0\)
Vì \(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow D\left(4;1\right)\)
Vậy \(B\left(-4;-3\right);C\left(2;-1\right);D\left(4;1\right)\)
Đường tròn (C) tâm \(I\left(2;1\right)\) bán kính \(R=5\)
Hình vuông ngoại tiếp đường tròn \(\Rightarrow AB=2R=10\)
Gọi M là tiếp điểm của (C) và AB \(\Rightarrow\) M là trung điểm AB và \(IM=R=\frac{AB}{2}=5\) ; \(AM=\frac{AB}{2}=5\)
Do A thuộc d nên tọa độ có dạng: \(A\left(2a-15;a\right)\)
\(\Rightarrow\overrightarrow{IA}=\left(2a-17;a-1\right)\)
Áp dụng Pitago: \(AM^2+IM^2=IA^2\Rightarrow\left(2a-17\right)^2+\left(a-1\right)^2=50\)
\(\Leftrightarrow5a^2-70a+240=0\Rightarrow\left[{}\begin{matrix}a=6\\a=8\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}A\left(-3;6\right)\left(loại\right)\\A\left(1;8\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{AI}=\left(1;-7\right)\) \(\Rightarrow\) phương trình BI qua I và vuông góc AI có dạng:
\(1\left(x-2\right)-7\left(y-1\right)=0\Leftrightarrow x-7y+5=0\)
\(\Rightarrow B\left(7b-5;b\right)\Rightarrow\overrightarrow{IB}=\left(7b-7;b-1\right)\)
\(IB^2=IA^2=50\Rightarrow\left(7b-7\right)^2+\left(b-1\right)^2=50\)
\(\Leftrightarrow\left(b-1\right)^2=1\Rightarrow\left[{}\begin{matrix}b=0\\b=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}B\left(-5;0\right)\\B\left(9;2\right)\end{matrix}\right.\)
Để giải bài toán này, ta thực hiện các bước sau đây:
Bước 1: Tìm tọa độ của điểm A. Vì hình vuông ABCD là hình vuông nên ta có AB=BC=CD=DA. Vậy, ta có tọa độ điểm A là A(0;6).
Bước 2: Tìm tọa độ của điểm C. Vì M là trung điểm của BC và BM=MC nên ta có tọa độ điểm C là C(2;2).
Bước 3: Tìm tọa độ của điểm D. Vì hình vuông ABCD là hình vuông nên ta có AD vuông góc AB và AD=AB. Vậy, tọa độ điểm D là D(-6;4).
Bước 4: Tìm tọa độ của điểm N. Điểm N có tung độ âm nên nằm dưới trục hoành. Ta cần tìm tọa độ của điểm N bằng cách giải hệ phương trình hợp là của đường thẳng d:x-2y-6=0 và đường thẳng CD: y = -x + 4.
Giải hệ phương trình ta có:
x - 2y = -6y = -x + 4Thay y của phương trình 2 vào phương trình 1 ta có:
x - 2(-x + 4) = -6 <=> x = 2Thay x = 2 vào phương trình 2 ta có: y = -2 + 4 <=> y = 2
Vậy, tọa đó điểm N là N(2;2).
Bước 5: Tìm tọa độ của điểm B. Vì B là đỉnh của hình vuông ABCD và biết tọa độ của điểm A và C nên ta có tọa độ điểm B là B(-2;6).
Bước 6: Tìm tọa độ của điểm E. Ta biết E thuộc đường thẳng AM nên ta có phương trình đường thẳng AM. Ta có tam giác AEM vuông tại E với AM là đường cao. Vậy, ta sử dụng định lý Pythagoras để tìm tọa độ của E.
Đường thẳng AM có hệ số góc bằng: m = (y_A-y_M)/(x_A-x_M) = (6-3)/(0-2) = -1.5
Vậy, phương trình đường thẳng AM là: y = -1.5x + 6 Điểm E thuộc đường thẳng AM nên thay x của E vào phương trình đường thẳng AM ta có: 3 = -1.5x + 6 <=> x = 2
Thay x của E vào phương thức đường thẳng AM ta có: y = -1.5*2 + 6 <=> y = 3
Vậy, tọa độ điểm E là E(2;3).
Bước 7: Tóm tắt kết quả. Tọa độ các đỉnh hình vuông là: A(0;6), B(-2;6), C(2;2), D(-6;4) Đường thẳng AM có phương trình là: y = -1.5x + 6 Tọa độ của điểm E là E(2;3) Điểm N có tọa độ là N(2;2)
B là giao điểm của BD và AB nên tọa độ thỏa mãn:
\(\left\{{}\begin{matrix}x+2y-7=0\\x+7y-7=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=7\\y=0\end{matrix}\right.\) \(\Rightarrow B\left(7;0\right)\)
Đường chéo AC qua A và vuông góc BD nên nhận (2;-1) là 1 vtpt
Phương trình AC:
\(2\left(x-0\right)-1\left(y-1\right)=0\Leftrightarrow2x-y+1=0\)
Gọi I là giao điểm AC và BD \(\Rightarrow\) I là tâm hình thoi, tọa độ I thỏa mãn:
\(\left\{{}\begin{matrix}2x-y+1=0\\x+2y-7=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\) \(\Rightarrow I\left(1;3\right)\)
I là trung điểm AC nên tọa độ C thỏa mãn:
\(\left\{{}\begin{matrix}x_C=2x_I-x_A=2\\y_C=2y_I-y_A=5\end{matrix}\right.\) \(\Rightarrow C\left(2;5\right)\)
I là trung điểm BD nên tọa độ D thỏa mãn:
\(\left\{{}\begin{matrix}x_D=2x_I-x_B=-5\\y_D=2y_I-y_B=6\end{matrix}\right.\) \(\Rightarrow D\left(-5;6\right)\)
Đường tròn (C) tâm \(I\left(4;3\right)\) bán kính \(R=2\)
Gọi \(A\left(2a+6;a\right)\) và \(C\left(0;c\right)\)
I là trung điểm AC \(\Rightarrow\left\{{}\begin{matrix}2a+6=8\\a+c=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\c=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A\left(8;1\right)\\C\left(0;5\right)\end{matrix}\right.\)
\(\overrightarrow{AC}=\left(-8;4\right)=-4\left(2;-1\right)\)
\(\Rightarrow\) Đường thẳng BD nhận \(\left(2;-1\right)\) là 1 vtpt
Phương trình BD: \(2\left(x-4\right)-1\left(y-3\right)=0\Leftrightarrow2x-y-5=0\)
Gọi pt AB có dạng \(a\left(x-8\right)+b\left(y-1\right)=0\Leftrightarrow ax+by-8a-b=0\)
AB là tiếp tuyến của (C) \(\Rightarrow d\left(I;AB\right)=R\)
\(\Rightarrow\frac{\left|4a+3b-8a-b\right|}{\sqrt{a^2+b^2}}=2\Leftrightarrow\left|2a-b\right|=\sqrt{a^2+b^2}\)
\(\Leftrightarrow4a^2-4ab+b^2=a^2+b^2\Leftrightarrow3a^2-4ab=0\)
\(\Rightarrow\left[{}\begin{matrix}a=0\\3a=4b\end{matrix}\right.\) chọn \(a=4\Rightarrow b=3\)
Có 2 đường thẳng AB thỏa mãn: \(\left[{}\begin{matrix}y-1=0\\4x+3y-35=0\end{matrix}\right.\)
Tọa độ B là giao điểm AB và BD \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=1\\2x-y-5=0\end{matrix}\right.\\\left\{{}\begin{matrix}4x+3y-35=0\\2x-y-5=0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}B\left(3;1\right)\\B\left(5;5\right)\end{matrix}\right.\)