K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2016

Xét phương trình hoành độ giao điểm của (P) và (d) :

\(x^2+2x+m=0\)\(\Delta'=4-m\)

Vì (P) và (d) cắt nhau tại hai điểm phân biệt nên \(\Delta'>0\Rightarrow m< 4\)

Theo hệ thức Vi-et, ta có : \(\hept{\begin{cases}x_A+x_B=-2\\x_A.x_B=m\end{cases}}\)

\(\frac{1}{x_A^2}+\frac{1}{x_B^2}=6\Leftrightarrow\)\(\frac{x^2_A+x^2_B}{x_A^2.x_B^2}=6\Leftrightarrow\frac{\left(x_A+x_B\right)^2-2x_A.x_B}{x_A^2.x^2_B}=6\Rightarrow\frac{4-2m}{m^2}=6\Leftrightarrow6m^2+2m-4=0\Rightarrow m=-1\)hoặc \(m=\frac{2}{3}\)

NM
21 tháng 3 2022

Xét phương trình hoành độ giao điểm ta có  :

\(2x^2=2mx+1\Leftrightarrow2x^2-2mx-1=0\text{ }\left(\text{*}\right)\)

Dễ thấy có ac = 2.(-1 ) = -2 < 0 nên (*) luôn có hai nghiệm phân biệt

mà rõ ràng x1 x2 trái dấu nên ta biết rằng : \(\left|x_2\right|-\left|x_1\right|=x_2+x_1=2m=2021\Leftrightarrow m=\frac{2021}{2}\)( do x2 dương, x1 âm)

NV
26 tháng 3 2022

Phương trình hoành độ giao điểm: \(x^2=2x-3m\Leftrightarrow x^2-2x+3m=0\) (1)

(P) cắt (d) tại 2 điểm khi (1) có 2 nghiệm \(\Rightarrow\Delta'=1-3m\ge0\Rightarrow m\le\dfrac{1}{3}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=3m\end{matrix}\right.\)

\(x_1.x_2^2-x_2\left(3m+2x_1\right)=12\)

\(\Leftrightarrow x_1x_2.x_2-3mx_2-2x_1x_2=12\)

\(\Leftrightarrow3mx_2-3mx_2-6m=12\)

\(\Rightarrow m=-2\)

25 tháng 4 2018

Phương trình hoành độ giao điểm của (d) và (P):

=> x^2 = (2m+2)x-m^2-2m

<=>x^2 -(2m+2)x+m^2+2m=0

(a=1;b=-(2m+2);c=m^2+2m)

Để 2 (d) cắt (P) tại 2 điểm phân biệt => \(\Delta\) >0

<=> (2m+2)^2-4(m^2+2m)>0

<=> 4m^2+8m+4-4m^2-8m>0

<=> 4>0 (luôn đúng)

Theo hệ thức Vi ét ta có: \(\hept{\begin{cases}x1+x2=2m+2\\x1.x2=m^2+2m\end{cases}}\)

x1+x2=5  <=> 2m+2=5 <=> 2m=3 <=> m=3/2.

(Mình cứ thấy nó sai sai và thiếu thiếu sao ý, cái đề ý)

31 tháng 5 2018

tôi ko bt

NM
21 tháng 3 2022

Xét phương trình hoành độ giao điểm ta có 

\(x^2=\left(2m+1\right)x-2m\Leftrightarrow\left(x-2m\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2m\end{cases}}\)

để p cắt d tại hai điểm phân biệt thì \(2m\ne1\Leftrightarrow m\ne\frac{1}{2}\).

ta có \(\hept{\begin{cases}x_1=1\Rightarrow y_1=x_1^2=1\\x_2=2m\Rightarrow y_2=x_2^2=4m^2\end{cases}}\)Vậy \(y_1+y_2-x_1x_2=1+4m^2-2m=1\Leftrightarrow4m^2-2m=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=\frac{1}{2}\end{cases}}\)

Kết hợp điều kiện hai nghiệm phân biệt ta có m =0 

24 tháng 3 2022

Xét PT hoành độ giao điểm của (P) và (d)

x2=(2m+1)x-2m

⇔x2-(2m+1)x+2m=0

a=1; b=-2m-1; c=2m
a+b+c=a+(-2m-1)+2m=0 Nên PT (1) có 2 nghiệm

x1=1 và x2=2m

*) với x1=1 ⇒y1=1

*) với x2=2m ⇒y2=(2m)2=4m2

Thay x1, x2, y1, y2 vào y1+y2-x1x2=1, ta có:

1+4m2-2m=1

⇔4m2-2m=0⇔2m(2m-1)=0 ⇔m=0 và m=\(\dfrac{1}{2}\)

Vậy với m=0 và 1/2 thì ......

 

 

8 tháng 2 2020

Ai hộ e với ạ,18h hôm nay e cần r,e cảm ơn trước.