Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm: \(x^2=2x-3m\Leftrightarrow x^2-2x+3m=0\) (1)
(P) cắt (d) tại 2 điểm khi (1) có 2 nghiệm \(\Rightarrow\Delta'=1-3m\ge0\Rightarrow m\le\dfrac{1}{3}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=3m\end{matrix}\right.\)
\(x_1.x_2^2-x_2\left(3m+2x_1\right)=12\)
\(\Leftrightarrow x_1x_2.x_2-3mx_2-2x_1x_2=12\)
\(\Leftrightarrow3mx_2-3mx_2-6m=12\)
\(\Rightarrow m=-2\)
a, Ta có A thuộc (P) <=> \(y_A=x^2_A\Rightarrow y_A=4\)Vậy A(-2;4)
b, Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-2x-m^2+2m=0\)
\(\Delta=1-\left(-m^2+2m\right)=m^2-2m+1=\left(m-1\right)^2\ge0\)
Để pt có 2 nghiệm pb khi m khác 1
c, Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-m^2+2m\end{cases}}\)
Vì x1 là nghiệm pt trên nên \(x_1^2=2x_1+m^2-2m\)
Thay vào ta được \(2x_1+m^2+2x_2=5m\)
\(\Leftrightarrow2\left(x_1+x_2\right)+m^2-5m=0\)
\(\Rightarrow m^2-5m+4=0\Leftrightarrow m=1\left(ktm\right);m=4\left(tm\right)\)
b) x2-2x-m2+2m=0
Δ'= (-1)2+m2-2m= (m-1)2>0 thì m≠1
KL:....
c) với m≠1 thì PT có 2 nghiệm PB
C1. \(x_1=1-\sqrt{\left(m-1\right)^2}=1-\left|m-1\right|\)
tt. tính x2
C2.
Theo Viets: \(S=x_1+x_2=2;P=x_1x_2=-m^2+2m\)
Ta có: \(x_1^2+2x_2=3m\Rightarrow x_1^2=3m-2x_2\)
Từ \(S=x_1+x_2=2\Rightarrow x_2=2-x_1\)Thay vào P ta có:
\(P=x_1\left(2-x_1\right)=-m^2+2m\)
⇔2x1-x12=-m2+2m
⇔2x1- (3m-2x2)=-m2+2m (Thay x12=3m-2x2)
⇔2x1-3m+2x2=-m2+2m⇔2(x1+x2)=-m2+5m ⇔2.2=-m2+5m ⇔m=4 (TM) và m=1(KTM)
Vậy với m=4 thì .....
Phương trình hoành độ giao điểm của (d) và (P):
=> x^2 = (2m+2)x-m^2-2m
<=>x^2 -(2m+2)x+m^2+2m=0
(a=1;b=-(2m+2);c=m^2+2m)
Để 2 (d) cắt (P) tại 2 điểm phân biệt => \(\Delta\) >0
<=> (2m+2)^2-4(m^2+2m)>0
<=> 4m^2+8m+4-4m^2-8m>0
<=> 4>0 (luôn đúng)
Theo hệ thức Vi ét ta có: \(\hept{\begin{cases}x1+x2=2m+2\\x1.x2=m^2+2m\end{cases}}\)
x1+x2=5 <=> 2m+2=5 <=> 2m=3 <=> m=3/2.
(Mình cứ thấy nó sai sai và thiếu thiếu sao ý, cái đề ý)
Xét phương trình hoành độ giao điểm ta có :
\(2x^2=2mx+1\Leftrightarrow2x^2-2mx-1=0\text{ }\left(\text{*}\right)\)
Dễ thấy có ac = 2.(-1 ) = -2 < 0 nên (*) luôn có hai nghiệm phân biệt
mà rõ ràng x1 x2 trái dấu nên ta biết rằng : \(\left|x_2\right|-\left|x_1\right|=x_2+x_1=2m=2021\Leftrightarrow m=\frac{2021}{2}\)( do x2 dương, x1 âm)
Phương trình hoành độ giao điểm của (P) và (d) là \(x^2=mx-1\)\(\Leftrightarrow x^2-mx+1=0\)(*)
pt (*) có \(\Delta=\left(-m\right)^2-4.1.\left(-1\right)=m^2+4\)
Vì \(m^2+4>0\)nên \(\Delta>0\)hay pt (*) luôn có 2 nghiệm phân biệt, đồng nghĩa với việc (d) luôn cắt (P) tại 2 điểm phân biệt.
Áp dụng hệ thức Vi-ét, ta có \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=1\end{cases}}\)
Như vậy ta có \(x_2\left(x_1^2+1\right)=3\)\(\Leftrightarrow x_2x_1^2+x_2=3\)\(\Leftrightarrow x_1+x_2=3\)\(\Rightarrow m=3\)\
Vậy để (d) cắt (P) tại 2 điểm phân biệt có hoành độ thỏa mãn yêu cầu đề bài thì \(m=3\)