K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2018

Lần sau tìm nơi gõ công thức và gõ hẳn ra nhé e <3

Áp dụng BĐT Cauchy-Schwarz ta có:

\(P=x^4+y^4\ge\frac{\left(x^2+y^2\right)^2}{2}\ge\frac{\left(\frac{\left(x+y\right)^2}{2}\right)^2}{2}=\frac{\left(\frac{2^2}{2}\right)^2}{2}=...\text{(tự tính nhé :)}\)

Khi \(x=y=1\)

4 tháng 1 2018

I spring. Because spring has many beautiful  flowers.

12 tháng 12 2018

\(\dfrac{x^2}{y+z}+\dfrac{1}{4}\left(y+z\right)\ge2.\sqrt{\dfrac{x^2}{y+z}.\dfrac{1}{4}\left(y+z\right)}=x\)

Tung tu : \(\dfrac{y^2}{x+z}+\dfrac{1}{4}\left(x+z\right)\ge y\)

\(\dfrac{z^2}{x+y}+\dfrac{1}{4}\left(x+y\right)\ge z\)

=> P+\(\dfrac{1}{4}\left(y+z\right)+\dfrac{1}{4}\left(x+z\right)+\dfrac{1}{4}\left(x+y\right)\ge x+y+z\)

=> P+\(\dfrac{1}{4}\left(2x+2y+2z\right)\ge4\)

=> P+2≥4

=> P≥2

Dau = khi: x=y=z=\(\dfrac{4}{3}\)

Vậy Min P=2 khi x=y=z=\(\dfrac{4}{3}\)

12 tháng 12 2018

đề có vấn đề không vậy? P = 4 ?

28 tháng 4 2019

mk co nen nghe ban than da tung phan boi mk ko... 

17 tháng 7 2023

\(P=\sqrt[]{x}+\dfrac{3}{\sqrt[]{x}-1}\left(x>1\right)\)

\(P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\)

Áp dụng bất đẳng thức Cauchy cho 2 số \(\sqrt[]{x}-1;\dfrac{3}{\sqrt[]{x}-1}\) ta được :

\(\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{\sqrt[]{x}-1.\dfrac{3}{\sqrt[]{x}-1}}\)

\(\Rightarrow\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{3}\)

\(\Rightarrow P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\ge2\sqrt[]{3}+1\)

\(\Rightarrow Min\left(P\right)=2\sqrt[]{3}+1\)

17 tháng 7 2023

sorry mn cho e sửa lại đề ạ

tìm gtln của p ạ

 

16 tháng 9 2018

Ta có:

\(E\: =x^2+\frac{2x}{y}+\frac{1}{y^2}+y^2+\frac{2y}{x}+\frac{1}{x^2}=\left(x^2+y^2\right)+2\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\)

\(\Rightarrow E\ge4+4+\frac{1}{x^2}+\frac{1}{y^2}=8+\frac{x^2+y^2}{x^2y^2}\)

Do:   \(4=x^2+y^2\ge2xy\Rightarrow xy\le2\Rightarrow x^2y^2\le4\Rightarrow\frac{4}{x^2y^2}\ge1\)

\(\Rightarrow E\ge8+1=9\)

Dấu bằng xảy ra khi x=y=\(\sqrt{2}\)

22 tháng 11 2017

x = 2007 and 2008 nha bn

24 tháng 6 2018

\(2=x+y\ge2\sqrt{xy}\Rightarrow xy\le1.\)

\(\left(x^4+1\right)\left(y^4+1\right)+2013\ge2x^2.2y^2+2013\ge4+2013=2017\)

Min=2017 

Dấu "=" xảy ra khi x=y=1