K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2016

vẽ hình đi

1 tháng 8 2016

undefined

12 tháng 4 2018

a, Gọi I là trung điểm của AB, ta có: OI = OA – IA

b, Ta chứng minh được IC//BD//OE

Mà OB = BI = IA => AC = CD = DE

a) Xét ΔOAM vuông tại A có 

\(\tan\widehat{AOM}=\dfrac{AM}{AO}=\sqrt{3}\cdot\dfrac{OA}{OA}=\sqrt{3}\)

hay \(\widehat{AOM}=60^0\)

\(\Leftrightarrow\widehat{AON}=60^0\)

Vậy: Số đo góc ở tâm tạo bởi 2 bán kính OA và ON là 600

b) Xét (O) có

\(\stackrel\frown{AN}\) là cung chắn góc ở tâm \(\widehat{AON}\)(gt)

nên \(sđ\stackrel\frown{AN}=60^0\)

Số đo cung lớn AN là: 

\(360^0-60^0=300^0\)

21 tháng 1 2021

Gọi B', C' lần lượt là giao điểm khác A của AB, AC với (O').

Do BM, CM là tiếp tuyến của (O') nên ta dễ dàng chứng minh được:

\(BM^2=BA.BB'\)\(CM^2=CA.CC'\)

\(\Rightarrow\dfrac{BM^2}{CM^2}=\dfrac{BA.BB'}{CA.CC'}\). (1) 

\(\Delta AOC\sim\Delta AO'C'(g.g)\Rightarrow \frac{AC}{AC'}=\frac{AO}{AO'}\).

Tương tự, \(\frac{AB}{AB'}=\frac{AO}{AO'}\).

Do đó \(\dfrac{AB}{AB'}=\dfrac{AC}{AC'}\Rightarrow\dfrac{AB}{BB'}=\dfrac{AC}{CC'}\Rightarrow\dfrac{AB}{AC}=\dfrac{BB'}{CC'}\). (2)

Từ (1), (2) suy ra \(\dfrac{BM}{CM}=\dfrac{AB}{AC}\).

Theo tính chất đường phân giác đảo thì AM là đường phân giác ngoài của tam giác ABC

\(\Rightarrow\widehat{MAB}+\widehat{MAC}=180^o\Rightarrow180^o+\widehat{BAC}=2\widehat{EAC}\)

\(\Rightarrow180^o-\widehat{EAC}=\dfrac{180^o-\widehat{BAC}}{2}\). (3) 

Các tứ giác FDEA, DBAC nội tiếp nên \(\widehat{FDB}=180^o-\widehat{EAC};\widehat{BDC}=180^o-\widehat{BAC}\). (4)

Từ (3), (4) suy ra \(\widehat{FDB}=\dfrac{\widehat{BDC}}{2}\) nên DF là phân giác góc BDC.

3 tháng 1 2019

O A B C M a) có OA = OB (=R)

=> O thuộc đường trung trực của AB

=> M là trung điểm của AB

=> MA = MB

(O) nhỏ có AB là tiếp tuyến tại M (gt)

=> AB \(\perp OM\) tại M ( t/c tiếp tuyến)

xét \(\Delta MAC\) vuông tại M (AB vuông OM cmt)

\(\Delta MBC\) vuông tại M ('' '' '')

có MA = MB ( cmt)

MC chung

=> \(\Delta MAC=\Delta MBC\) (2cgv)

=> AC = CB ( 2 cạnh t/ư)

(O) lớn có dây AC = dây CB (cmt)

=>\(\stackrel\frown{AC}=\stackrel\frown{CB}\) ( 2 dây = nhau căng 2 cung = nhau)

b)

\(\Delta OAMvuôngtạiM\) (OM vuông AB)

=> \(OA^2=OM^2+MA^2\) (định lí pytago)

=> \(R^2=\left(\dfrac{R\sqrt{3}}{2}\right)^2+MA^2\)

=> MA = \(\dfrac{1}{2}R\)

có AB = MA + MB (vì M thuộc AB)

hay AB = 2 . MA (vì M A= MB cmt)

= 2.\(\dfrac{1}{2}R\)

=R

=> AB = OA = OB (VÌ OA=OB =R)

=>\(\Delta OAB\) đều

=> \(\widehat{OAB}=60^0\)

=> \(\stackrel\frown{AB}=60^0\)