K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

Gọi giao điểm AC và BD là I

Pytago lần lượt vào các tam giác vuông AIB;BIC;CID;AID ta được :

\(AB^2=AI^2+BI^2\)

\(BC^2=BI^2+CI^2\)

\(CD^2=DI^2+CI^2\)

\(AD^2=DI^2+CI^2\)

\(\Rightarrow\hept{\begin{cases}AB^2+DC^2=AI^2+BI^2+CI^2+DI^2\\BC^2+AD^2=AI^2+BI^2+CI^2+DI^2\end{cases}}\)

\(\RightarrowĐPCM\)

17 tháng 3 2020

\(AD^2=AI^2+ID^2\)nha 

-.- mơ ngủ tẹo :v

~~

7 tháng 4 2020

ai chơi ngọc rồng onlie ko cho mk xin 1 nick

7 tháng 4 2020

a) Vẽ tia CO cắt tia đối của tia By tại E

Xét tam giác vuông AOC và tam giác vuông BOE có : 

AO = OB ( gt ) 

AOC = BOE ( 2 góc đối đỉnh ) 

\(\implies\)  tam giác vuông AOC = tam giác vuông BOE ( cạnh huyền - góc nhọn ) 

\(\implies\) AC = BE ( 2 cạnh tương ứng ) 

Xét tam giác vuông DOC và tam giác vuông DOE có : 

OD chung 

OC = OE ( tam giác vuông AOC = tam giác vuông BOE ) 

\(\implies\) tam giác vuông DOC = tam giác vuông DOE ( 2 cạnh góc vuông ) 

\(\implies\) CD = ED ( 2 cạnh tương ứng ) 

Mà ED = EB + BD 

\(\implies\) ED = AC + BD 

\(\implies\) CD = AC + BD 

b) Xét tam giác DOE vuông tại O có : 

OE2 + OD2 = DE2 ( Theo định lý Py - ta - go ) 

 Xét tam giác BOE vuông tại B có : 

OB2 + BE2 = OE2 ( Theo định lý Py - ta - go ) ( * ) 

 Xét tam giác BOD vuông tại B có : 

OB2 + BD2 = OD2 ( Theo định lý Py - ta - go ) ( ** )

Cộng ( * ) với ( ** ) vế với vế ta được : 

OE2 + OD2 = 2. OB2 + EB2 + DB2 

Mà OE2 + OD2 = DE2 ( cmt ) 

\(\implies\) DE2 = 2. OB2 + EB2 + DB2 

                 = 2. OB2 + EB . ( DE - BD ) + DB . ( DE - BE ) 

                 = 2. OB2 + EB . DE - EB . BD + DB . DE - DB . BE 

                 = 2. OB2 + ( EB . DE + DB . DE ) - 2 . BD . BE 

                 = 2. OB2 + DE . ( EB + DB ) - 2 . BD . BE  

                 = 2. OB2 + DE2 - 2 . BD . BE  

\(\implies\) 2. OB2 - 2 . BD . BE = 0 

\(\implies\) 2. OB2 = 2 . BD . BE

\(\implies\) OB2 = BD . BE 

Mà BE = AC ( cmt ) ; OB = AB / 2 ( gt ) 

\(\implies\) AC . BD = ( AB / 2 )2 

\(\implies\) AC . BD = AB2 / 4 

11 tháng 8 2019

ta có : d \(\perp\)a  và d' \(\perp\)a       nên d // d'   suy ra d và d; không cắt nhau 

mình nghĩ vậy 

còn vẽ hình bn tự vẽ nha mình không biết vẽ trên máy tính 

chúc bn học tốt

           

11 tháng 8 2019

A B d m a

Nếu đường thẳng d và m cắt nhau tại M \(\Rightarrow\)M thuộc đường thẳng d và m

M thuộc đường thẳng d  \(\Rightarrow\)MA  vuông góc với a

M thuộc đường thẳng m  \(\Rightarrow\)MB vuông góc với b

\(\Rightarrow\)MA trùng với đường thẳng MB

\(\Rightarrow\)A trùng với B . Điều này không thể xảy ra vì AB=6cm

Vậy d không cắt m

26 tháng 4 2018

a, Xét tam giác DAE và tam giác BAC có

      DAE = BAC ( đối đỉnh )

      AD = AB ( gt)

     AE= AC ( gt) 

=> tam giác DAE = tam giác BAC 

=> BC= DE

b, ta có  DAE = BAC = 90 độ ( 2 góc đối đỉnh )

 lại có BAD = CAE đối đỉnh 

=> BAD=CAE = 360 - (BaC + DAE)   tất cả trên 2 

<=> BAD= 360 -180  tâts cả trên 2 
<=> BAD = 180 trên 2

<=> BAD = 90 độ 

=> tam giác BAD vuông lại A

mà AB =AD (gt)

=> BAD vuông cân

=> DBA = BDA = 90 trên 2 = 45 độ

Chứng mình tương tự tam giác CAE vuông cân 

=>AEC=ACE= 90 trên 2 = 45 độ 

=> DBA=AEC=45 độ

mà chúng ở vị trí sole trong 

=> BD // CE

30 tháng 12 2016

A B C H D 35 o

a) Xét tam giác AHB và tam giác DBH có:

AH=BD (giả thiết)

Góc AHB=góc DBH (=90o)

BH là cạnh chung

=> Tam giác AHB = tam giác DBH (c.g.c)

b) Theo chứng minh phần a: Tam giác AHB = tam giác DBH => Góc ABH = góc BHD (2 góc tương ứng)

Mà góc ABH và góc BHD là 2 góc so le trong => AB//DH

c) Tam giác ABH có: \(\widehat{BAH}+\widehat{AHB}+\widehat{ABH}=180^o\) (tổng 3 góc trong tam giác)

=>\(35^o+90^o+\widehat{ABH}=180^o\Rightarrow\widehat{ABH}=180^o-35^o-90^o=55^o\)

Tam giác ABC có: \(\widehat{BAC}+\widehat{ACB}+\widehat{ABC}=180^o\)(tổng 3 góc trong tam giác)

=>\(90^o+\widehat{ACB}+55^o=180^o\Rightarrow\widehat{ACB}=180^o-90^o-55^o=35^o\)

28 tháng 12 2020

góc a phải bằng 45 độ chứ 

26 tháng 2 2024

a,  Xét tg ABH và tg ADH có : 

       BH=DH(gt)

       AH chung 

        ∠AHB=∠AHC (=90 độ)

=> tg ABH = tg ADH ( c.g.c) 

=> AB = AB ( 2 cạnh tương ứng ) 

=>  tg ABD cân (1) 

Trong tg ABC có : ∠A+∠B+∠C= 180 độ

=> 1/2∠B+∠B=90 độ 

=> ∠B= 60 độ (2) 

Từ (1) , (2) => tg ABD là tg đều 

b, +) Ta có : ∠BAD + ∠DAC = ∠BAC

=> 60 độ + ∠DAC = 90 độ

=>∠DAC = 30 độ

Lại có :  ∠DCA = 90 độ - 60 độ = 30 độ (3)

=> ∠DAC = ∠DCA ( =30 độ ) 

=> tg DAC cân tại D => AD=CD 

+) Xét tg HDA và tg EDC có : 

AD=CD(cmt)

 ∠HDA= ∠EDC ( đđ')

=> tg HDA = tg EDC ( ch-gn) 

=> DH=DE( 2 cạnh tương ứng ) 

=> tg DHE cân tại D

+)Lại có : ∠ADC= 180 độ -  ∠DAC -∠DCA= 120 độ

=>∠ADC=∠HDE(=120 độ)

=> ∠DHE = 180 - 120/2 = 30 (4)

Từ (3),(4)=> ∠DCA= ∠DHE

Mà chúng ở vị trí SLT => HE//AC