K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2021

a)

A(x) = \(x^6-2x^5+9x^4+5x^3-4x+7\)

B(x) = \(-x^6-2x^5+9x^4-5x^3+2x-7\)

b)

A(x)+B(x) = \(-4x^5+18x^4-2x\)

A(x)-B(x) = \(2x^6+10x^3-6x+14\)

24 tháng 4 2018

a, f(x) = -2x\(^3\) + 7 - 6x + 5x\(^4\) - 2x\(^3\)

=5x\(^4\)+(-2x\(^3\)-2x\(^3\))-6x+7

=5x\(^4\)-4x\(^3\)-6x+7

g(x)= 5x\(^2\) + 9x - 2x\(^4\) - x\(^2\)+ 4x\(^3\) -12

=-2x\(^4\)+4x\(^3\)+(5x\(^2\)-x\(^2\))+9x-12

=-2x\(^4\)+4x\(^3\)+4x\(^2\)+9x-12

b,f(x)+g(x)=5x\(^4\)-4x\(^3\)-6x+7+-2x\(^4\)+4x\(^3\)+4x\(^2\)+9x-12

=(5x\(^4\)-2x\(^4\))+(-4x\(^3\)+4x\(^3\))+4x\(^2\)+(-6x+9x)+(7-12)

= 3x\(^4\)+4x\(^2\)+3x-5

8 tháng 8 2016

\(A=x^7-2x^4+3x^3-3x^4+2x^7-x+7-2x^3\) 

\(A=3x^7-5x^4+x^3-x+7\) 

\(B=3x^2-4x^4-3x^2-5x^5-0,5x-2x^2-3\)

\(B=-5x^5-4x^4-2x^2-0,5x-3\)

8 tháng 8 2016

\(A+B=3x^7-5x^4+x^3-x+7-5x^5-4x^4-2x^2-0,5x-3\) 

\(A+B=3x^7-9x^4+x^3-1,5x+4\)

\(A-B=3x^7-5x^4+x^3-x+7+5x^5+4x^4+2x^2+0,5x+3\)

\(A-B=3x^7-x^4+x^3-0,5x+10+5x^5\)

1 tháng 5 2023

F(\(x\)) = - 2\(x\)3 + 7 - 6\(x\) + 5\(x^4\) - 2\(x^3\)

F(\(x\)) = (-2\(x^3\) - 2\(x^3\)) + 7 - 6\(x\) + 5\(x^4\)

F(\(x\)) = -4\(x^3\) + 7 - 6\(x\) + 5\(x^4\)

F(\(x\)) = 5\(x^4\) - 4\(x^3\) - 6\(x\) + 7

G(\(x\)) = 5\(x^2\) + 9\(x\) - 2\(x^4\) - \(x^2\) + 4\(x^3\) - 12

G(\(x\)) = (5\(x^2\) - \(x^2\)) + 9\(x\) - 2\(x^4\) + 4\(x^3\) - 12

G(\(x\)) = 4\(x^2\) + 9\(x\) - 2\(x^4\) + 4\(x^3\) - 12

G(\(x\)) = -2\(x^4\) + 4\(x^3\) +4\(x^2\) + 9\(x\) - 12

b, F(\(x\)) + G(\(x\)) = 5\(x^4\) - 4\(x^3\) - 6\(x\) + 7 + ( -2\(x^4\) + 4\(x^3\)+4\(x^2\)+9\(x\)-12)

F(\(x\)) + G(\(x\)) = 5\(x^4\)- 4\(x^3\) - 6\(x\)+ 7 - 2\(x^4\) + 4\(x^3\) + 4\(x^2\) + 9\(x\) - 12

F(\(x\)) + G(\(x\)) = (5\(x^{4^{ }}\) -2\(x^4\)) -(4\(x^3\) - 4\(x^3\)) + 4\(x^2\) + (9\(x\)-6\(x\)) - ( 12 - 7)

F(\(x\)) + G(\(x\)) = 3\(x^4\) + 4\(x^2\) + 3\(x\) - 5

1 tháng 6 2020

a)\(A\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6\\ B\left(x\right)=x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)

b)\(A\left(x\right)+B\left(x\right)\)

\(\left(5x^5-4x^4-2x^3+4x^2+3x+6\right)+\left(x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\right)\\ =5x^2-4x^4-2x^3+4x^2+3x+6+x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\\ =\left(5x^5+x^5\right)+\left(-4x^4+2x^4\right)+\left(-2x^3-2x^3\right)+\left(4x^2+3x^2\right)+\left(3x-x\right)+\left(6+\frac{1}{4}\right)\\ =6x^5-2x^4-4x^3+7x^2+2x+\frac{25}{4}\)

24 tháng 7 2019

a) \(A\left(x\right)=2x^4-5x^3-x^4-6x^2+5+5x^2-10+x\)

\(=\left(2x^4-x^4\right)-5x^3+\left(5x^2-6x^2\right)+x+\left(5-10\right)\)

\(=3x^4-5x^3-x^2+x-5\)

\(B\left(x\right)=-7-4x+6x^4+6+3x-x^3-3x^4\)

\(=\left(6x^4-3x^4\right)-x^3+\left(3x-4x\right)+\left(6-7\right)\)

\(=x^4-x^3-x-1\)

24 tháng 7 2019

b) \(A\left(x\right)+B\left(x\right)\)

\(=\left(3x^4-5x^3-x^2+x-5\right)+\left(x^4-x^3-x-1\right)\)

\(=5x^4-6x^3-x^2-6\)

 \(A\left(x\right)-B\left(x\right)\)

\(=\left(3x^4-5x^3-x^2+x-5\right)-\left(x^4-x^3-x-1\right)\)

\(=\left(3x^4-5x^3-x^2+x-5\right)-x^4+x^3+x+1\)

\(=2x^4-4x^3-x^2+2x-4\)

21 tháng 3 2021

a, Sắp xếp : \(P\left(x\right)=2x^3+5x^2-3x^4+7-4x\)

\(\Rightarrow P\left(x\right)=-3x^4+2x^3-5x^2-4x+7\)

\(Q\left(x\right)=-3+2x^4-x+x^3-5x^2\)

\(\Rightarrow Q\left(x\right)=2x^4+x^3-5x^2-x-3\)

b, Ta có :* Đặt \(V\left(x\right)=P\left(x\right)+Q\left(x\right)\) 

hay \(V\left(x\right)=2x^3+5x^2-3x^4+7-4x-3+2x^4-x+x^3-5x^2\)

\(=3x^3-x^4+4-5x\)

Vậy \(V\left(x\right)=3x^3-x^4+4-5x\)

Ta có : * Đặt \(K\left(x\right)=P\left(x\right)-Q\left(x\right)\)

hay \(2x^3+5x^2-3x^4+7-4x-\left(-3+2x^4-x+x^3-5x^2\right)\)

\(=2x^3+5x^2-3x^4+7-4x+3-2x^4+x-x^3+5x^2\)

\(=x^3+10x^2-5x^4+10-3x\)

Vậy \(K\left(x\right)=x^3+10x^2-5x^4+10-3x\)

9 tháng 6 2021

a) \(A\left(x\right)=-5x^3-2x^2+x+9x^3-2x^2-\left(x-1\right)\)

\(=\left(9x^3-5x^3\right)-\left(2x^2+2x^2\right)+\left(x-x\right)+1\)

\(=4x^3-4x^2+1\)

\(C\left(x\right)=x^3-2x\left(3x+1\right)-4\)

\(=x^3-6x^2-2x-4\)

b) \(A\left(x\right)+C\left(x\right)=4x^3-4x^2+1+x^3-6x^2-2x-4\)

\(=\left(4x^3+x^3\right)-\left(4x^2+6x^2\right)-2x+\left(1-4\right)\)

\(=5x^3-10x^2-2x-3\)

\(A\left(x\right)-C\left(x\right)=4x^3-4x^2+1-\left(x^3-6x^2-2x-4\right)\)

\(=4x^3-4x^2+1-x^3+6x^2+2x+4\)

\(=\left(4x^3-x^3\right)+\left(6x^2-4x^2\right)+2x+\left(1+4\right)\)

\(=3x^3+2x^2+2x+5\)

9 tháng 6 2021

a, \(A\left(x\right)=-5x^3-2x^2+x+9x^3-2x^2-\left(x-1\right)\)

\(=4x^3-4x^2+x-x+1=4x^3-4x^2+1\)

\(C\left(x\right)=x^3-2x\left(3x+1\right)-4=x^3-6x^2-2x-4\)

b, \(A\left(x\right)+C\left(x\right)=5x^3-10x^2-2x-3\)

\(A\left(x\right)-C\left(x\right)=3x^3+2x^2+2x+5\)