K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn...
Đọc tiếp

Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng

Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng

Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn vectoAB=k. vectoAC và vectoMN=k. vectoMP (k khác 1). Giả sử X, Y, Z là các điểm chia các đoạn thẳng AM, BN và CP theo cùng 1 tỉ số. CMR: X, Y, Z thẳng hàng

Bài 4: Cho góc xOy và 2 điểm M, N di chuyển trên 2 cạnh Ox, Oy thỏa mãn OM=2ON.
a)) CMR: trung điểm I của MN luôn thuộc 1 đường thẳng cố định
b)) Nghiên cứu trường hợp giả thiết thay OM=2ON thành OM=mON với m là 1 hằng số cố định
c)) Nghiên cứu trường hợp thay giả thiết I là trung điểm MN thành giả thiết I là điểm chia MN theo tỉ số k cố định. (toán lớp 10 ạ)

0
3 tháng 2 2019

x

11 tháng 5 2016

các bạn ơi giúp mình với

2 tháng 1 2017

a) OD // CE (_|_ OE) và CD // OE (_|_OD)

=> ODCE là hình bình hành . Mà O^ = 90o

=> ODCE là hình chữ nhật (*) => CE=OD

b) (*) => DCE^ = 90o hay CE_|_ CD

c) tam giác ADC và tam giác CEB:

AD = CE (=DO)

EDC^ = CEB^ = 90o

DC=EB (=OE)

=> tam giác ADC= tam giác CEB (2 cạnh góc vuông)

=> AC = CB ( 2 cạnh tương ứng)

d) AD //= CE (cmt) => tứ giác ACED là hình bình hành => AC // DE (*)

e) DC //= EB => tứ giác DCBE là hình bình hành

=> DE//BC ( 2 cạnh đối) (**)

Từ (*) và (**) => A,C,B thẳng hàng

NV
11 tháng 10 2020

\(\left\{{}\begin{matrix}\overrightarrow{IJ}=\overrightarrow{IA}+\overrightarrow{AB}+\overrightarrow{BJ}\\\overrightarrow{IJ}=\overrightarrow{ID}+\overrightarrow{DC}+\overrightarrow{CJ}\end{matrix}\right.\)

Cộng vế với vế:

\(2\overrightarrow{IJ}=\left(\overrightarrow{IA}+\overrightarrow{ID}\right)+\left(\overrightarrow{BJ}+\overrightarrow{CJ}\right)+\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AB}+\overrightarrow{DC}\)

\(\Rightarrow\overrightarrow{IJ}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{DC}\)

b/ Đặt \(\frac{MA}{MB}=\frac{ND}{NC}=k\)

\(\left\{{}\begin{matrix}\overrightarrow{IP}=\overrightarrow{IA}+\overrightarrow{AM}+\overrightarrow{MP}\\\overrightarrow{IP}=\overrightarrow{ID}+\overrightarrow{DN}+\overrightarrow{NP}\end{matrix}\right.\)

\(\Rightarrow2\overrightarrow{IP}=\left(\overrightarrow{IA}+\overrightarrow{ID}\right)+\left(\overrightarrow{MP}+\overrightarrow{NP}\right)+\overrightarrow{AM}+\overrightarrow{DN}=\overrightarrow{AM}+\overrightarrow{DN}\)

\(\Rightarrow2\overrightarrow{IP}=k.\overrightarrow{AB}+k.\overrightarrow{DC}\)

\(\Rightarrow\overrightarrow{IP}=\frac{k}{2}\left(\overrightarrow{AB}+\overrightarrow{DC}\right)=\frac{k}{2}.\overrightarrow{IJ}\Rightarrow P;I;J\) thẳng hàng hay P thuộc IJ

7 tháng 5 2018

1). Gọi S điểm đối xứng với P qua M.Theo tính chất đối xứng của hình thang cân dễ thấy tứ giác ABSP cũng là hình thang cân.

Ta lại có    Q P S ^ = Q A B ^ = Q R B ^  .

Từ đó có E P Q ^ = E R P ^ ⇒ Δ E R P ∽ Δ E P Q  (g – g),

nên E Q P ^ = E P R ^ = B P S ^ = A S E ^ , suy ra tứ giác AEQS nội tiếp.

Do đó P A . P Q = P E . P S = P F 2 .2 P M = P F . P M , suy ra tứ giác A M Q F  nội tiếp.

Từ đó suy ra đường tròn ngoại tiếp tam giác △ A Q F  luôn đi qua M.

22 tháng 12 2016

cái này toán lớp 10 á?

22 tháng 12 2016

ko mà toán 7