Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Theo câu a) ta có \(\Delta QOM=\Delta HOM.\)
=> \(\widehat{QMO}=\widehat{HMO}\) (2 góc tương ứng).
Hay \(\widehat{QMG}=\widehat{HMG}.\)
x y O I A B
gt : \(\widehat{xOy}< 90^{\text{o}}\), \(\widehat{xOI}=\widehat{Ioy}\), \(IA\perp Ox\), \(IB\perp Oy\).
kl : .
c/m : Xét AIO và BIO , có :
\(OI\) là cạnh chung
\(\widehat{xOI}=\widehat{IOy}\left(gt\right)\)
\(\Rightarrow\) AIO BIO (ch - gn)
\(\Rightarrow IA=IB\) (2 cạnh tương ứng) (đpcm)
< Em tự vẽ hình nhé! >
+, Xét tam giác IAO và tam giác IBO có :
IO chung
Góc AOI = Góc IOB ( vì OI là tia phân giác của góc xOy)
Góc IAO = Góc IOB = 90 độ (gt)
=> Tam giác IAO = tam giác IBO ( ch-gn)
=> IA = IB ( 2 cạnh tương ứng )
Hình: chắc bác cũng tự vẽ đc =.=
Xét \(\Delta OAC\)và \(\Delta OAB\)có:
\(\widehat{C}=\widehat{B}=90^o\)
\(\widehat{AOC}=\widehat{AOB}\)(gt) \(\Rightarrow\Delta OAC=\Delta OAB\)
OA chung (CH-GN)
=> OB= OC ( 2 cạnh tương ứng) (1)
Từ (1), ta có: \(\Delta BOC\)cân tại O
x O y A z B M H K
Giải:
a) Xét \(\Delta MOA,\Delta MOB\) có:
\(\widehat{AOM}=\widehat{OMB}\) ( cặp góc so le trong và AM // Oy )
OM: cạnh chung
\(\widehat{AMO}=\widehat{BOM}\) ( cặp góc so le trong và AM // Oy )
\(\Rightarrow\Delta MOA=\Delta MOB\left(g-c-g\right)\)
\(\Rightarrow OA=OB\) ( cạnh t/ứng )
\(\Rightarrow MA=MB\) ( cạnh t/ứng )
b) Xét \(\Delta HOM\) có: \(\widehat{HOM}+\widehat{HMO}=90^o\) ( do \(\widehat{H}=90^o\) )
Xét \(\Delta KOM\) có: \(\widehat{MOK}+\widehat{OMK}=90^o\) ( do \(\widehat{K}=90^o\) )
Mà \(\widehat{HOM}=\widehat{MOK}\left(=\frac{1}{2}\widehat{O}\right)\)
\(\Rightarrow\widehat{HMO}=\widehat{OMK}\)
Xét \(\Delta HOM,\Delta KOM\) có:
\(\widehat{HOM}=\widehat{KOM}\left(=\frac{1}{2}\widehat{O}\right)\)
OM: cạnh chung
\(\widehat{HMO}=\widehat{OMK}\) ( cmt )
\(\Rightarrow\Delta HOM=\Delta KOM\left(g-c-g\right)\)
\(\Rightarrow MH=MK\) ( cạnh t/ứng )
Vậy...