Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. \(BĐT\Leftrightarrow\frac{1}{1+\frac{2}{a}}+\frac{1}{1+\frac{2}{b}}+\frac{1}{1+\frac{2}{c}}\ge1\)
Đặt\(\frac{2}{a}=x;\frac{2}{b}=y;\frac{2}{c}=z\)thì \(\hept{\begin{cases}x,y,z>0\\xyz=8\end{cases}}\)
Ta cần chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge1\Leftrightarrow\left(yz+y+z+1\right)+\left(zx+z+x+1\right)+\left(xy+x+y+1\right)\ge xyz+\left(xy+yz+zx\right)+\left(x+y+z\right)+1\)\(\Leftrightarrow x+y+z\ge6\)(Đúng vì \(x+y+z\ge3\sqrt[3]{xyz}=6\))
Đẳng thức xảy ra khi x = y = z = 2 hay a = b = c = 1
3. Ta có: \(a+b+c\le\sqrt{3}\Rightarrow\left(a+b+c\right)^2\le3\)
Ta có đánh giá quen thuộc \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
Từ đó suy ra \(ab+bc+ca\le1\)
\(A=\frac{\sqrt{a^2+1}}{b+c}+\frac{\sqrt{b^2+1}}{c+a}+\frac{\sqrt{c^2+1}}{a+b}\ge\frac{\sqrt{a^2+ab+bc+ca}}{b+c}+\frac{\sqrt{b^2+ab+bc+ca}}{c+a}+\frac{\sqrt{c^2+ab+bc+ca}}{a+b}\)\(=\frac{\sqrt{\left(a+b\right)\left(a+c\right)}}{b+c}+\frac{\sqrt{\left(b+a\right)\left(b+c\right)}}{c+a}+\frac{\sqrt{\left(c+a\right)\left(c+b\right)}}{a+b}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=3\)Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Từ giải thiết :\(f\left(x\right)=ax^2+bx+c>0\Rightarrow\Delta< 0\Leftrightarrow4ac>b^2.\left(1\right)\)(bạn đọc ở chuyên đề Dấu tam thức bậc hai có cái này)
Với a,b,c nguyên dương (b khác 1)
Áp dụng bất đẳng thức AM-GM cho 2 số không âm ta có:
\(3350a+1340c\ge2\sqrt{3350a.1340c}=2\sqrt{335^2.10.4ac}\)
Kết hợp với (1) suy ra:
\(3350a+1340a\ge2.335.\sqrt{b^2.10}>2.335.3.b=2010b.\)
\(\Rightarrow3350a+1340c+2b+1>2012b+1\)
\(\Rightarrow3350a+1340c+4ac+2b+1>b^2+2012b+1\)
\(\Rightarrow\frac{3350a+1340b+4ac+2b+1}{b}>b+2012+\frac{1}{b}\)
Mà \(b+\frac{1}{b}\ge2\sqrt{b.\frac{1}{b}}=2\Rightarrow b+2012+\frac{1}{b}\ge2014.\)
Suy ra \(\frac{3350a+1340c+4ac+2b+1}{b}>2014.\)
ui..khó qw ~ mún giải lắm nhưng hk đc...e ms lp 7 thoy ak***ahihi^^
nè đọc cái bất đnagử thức shur và kĩ năng đặt ẩn p-q-r đi là giải ra , nên tìm kiếm trong ộng tổ google đi nhé\