Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. PT hoành độ giao điểm: $x^2-2(m+2)x-m^2-7=0(*)$
$(d)$ cắt $(P)$ tại 2 điểm phân biệt $\Leftrightarrow (*)$ có 2 nghiệm phân biệt
$\Leftrightarrow \Delta'=(m+2)^2+m^2+7>0$ (luôn đúng với mọi $m\in\mathbb{R}$)
Vậy (d), (P) cắt nhau tại 2 điểm phân biệt với mọi $M\in\mathbb{R}$
b.
$x_1,x_2$ chính là 2 nghiệm của $(*)$
Theo định lý Viet:
$x_1+x_2=2(m+2)$
$x_1x_2=-(m^2+7)$
Khi đó:
$x_1^2+x_2^2=x_1x_2+12$
$\Leftrightarrow (x_1+x_2)^2=3x_1x_2+12$
$\Leftrightarrow 4(m+2)^2=-3(m^2+7)+12$
$\Leftrightarrow 7m^2+16m+25=0$
PT này vô nghiệm nên không tồn tại $m$ thỏa đk đã cho
ĐK \(x_2\ge0;\)
Phương trình hoành độ giao điểm
x2 = mx + m + 1
\(\Leftrightarrow x^2-mx-m-1=0\)
Có \(\Delta=m^2+4\left(m+1\right)=\left(m+2\right)^2\ge0\)
\(\Rightarrow\)Phương trình có nghiệm với mọi m
Phương trình 2 nghiệm \(\hept{\begin{cases}x_1=\frac{m-\left|m+2\right|}{2}\\x_2=\frac{m+\left|m+2\right|}{2}\end{cases}}\)
Khi m + 2 < 0 thì x1 = m + 1 ; x2 = -1 (loại)
khi m + 2 \(\ge0\)thì x1 = -1 ; x2 = m + 1
\(\Rightarrow x_1=-1;x_2=m+1\)nghiệm phương trình
Khi đó ta có -1 + m - m = \(\sqrt{m+1}-\sqrt[3]{8}\)
\(\Leftrightarrow\sqrt{m+1}=1\Leftrightarrow m=0\)(tm)
Phương trình hoành độ giao điểm:
x2 = 2x - m
<=> x2 - 2x + m = 0
Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta>0\)
<=> (-1)2 - m > 0
<=> 1 - m > 0
<=> m < 1
Ta có: y1 = x12
y2 = x22
y1 + y2 + x12x22 = 6(x1 + x2)
<=> x12 + x22 + x12x22 = 6(x1 + x2)
<=> (x1 + x2)2 - 2x1x2 + (x1x2)2 = 6(x1 + x2)
Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2\\x_1x_2=\frac{c}{a}=m\end{cases}}\)
<=> 22 - 2m + m2 = 6.2
<=> 4 - 2m + m2 = 12
<=> 4 - 2m + m2 - 12 = 0
<=> m2 - 2m - 8 = 0
<=> m = 4 (ktm) hoặc m = -2 (tm)
=> m = -2
Phương trình hoành độ giao điểm của (d) và (P):
=> x^2 = (2m+2)x-m^2-2m
<=>x^2 -(2m+2)x+m^2+2m=0
(a=1;b=-(2m+2);c=m^2+2m)
Để 2 (d) cắt (P) tại 2 điểm phân biệt => \(\Delta\) >0
<=> (2m+2)^2-4(m^2+2m)>0
<=> 4m^2+8m+4-4m^2-8m>0
<=> 4>0 (luôn đúng)
Theo hệ thức Vi ét ta có: \(\hept{\begin{cases}x1+x2=2m+2\\x1.x2=m^2+2m\end{cases}}\)
x1+x2=5 <=> 2m+2=5 <=> 2m=3 <=> m=3/2.
(Mình cứ thấy nó sai sai và thiếu thiếu sao ý, cái đề ý)