K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2021

Ta có f(0)=a.0

2

+b.0+c=c=>c là số nguyên

 

f(1)=a.1

2

+b.1+c=a+b+c

 

Vì c là số nguyên=>a+b là số nguyên(1)

 

f(2)=a.2

2

+b.2+c=2.(2a+b)+c=>2.(2a+b)là số nguyên=>2a+b là số nguyên(2)

 

Từ (1)và(2)=>(2a+b)-(a+b)=2a+b-a-b=a là số nguyên=>a là số nguyên

 

Do a+b là số nguyên, mà a là số nguyên

 

=>b là số nguyên

 

Vậy f(x) luôn nhận giá trị nguyên với mọi x

3 tháng 5 2017

\(f\left(0\right)=a.0^3+b.0^2+c.0+d=d\)

\(f\left(1\right)=a.1^3+b.1^2+c.1+d=a+b+c+d\)

\(f\left(-1\right)=a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)+d=-a+b-c+d\)

Do f(x)=ax3+bx2+cx+d đạt giá trị nguyên với mọi x => d;a+b+c+d;-a+b-c+d nguyên

=>(a+b+c+d)+(-a+b-c+d)=2b+2d  mà d nguyên => 2d nguyên 

=>(2b+2d)-2d=2b nguyên

6 tháng 4 2017

Ta có f(0)=a.02+b.0+c=c

=> c là số nguyên

f(1)=a.12+b.1+c=a+b+c=(a+b)+c

Vì c là số nguyên nên a+b là số nguyên (1)

f(2)=a.22+b.2+c=2(2a+b)+c

=>2.(2a+b) là số nguyên

=> 2a+b là số nguyên (2)

Từ (1) và (2) =>(2a+b)-(a+b) là số nguyên  =>a là số nguyên  => b cũng là số nguyên

Vậy f(x) luôn nhân giá trị nguyên với mọi x

6 tháng 4 2017

Ta có f(0)=a.0\(^2\)+b.0+c=c=>c là số nguyên

f(1)=a.1\(^{^2}\)+b.1+c=a+b+c

Vì c là số nguyên=>a+b là số nguyên(1)

f(2)=a.2\(^2\)+b.2+c=2.(2a+b)+c=>2.(2a+b)là số nguyên=>2a+b là số nguyên(2)

Từ (1)và(2)=>(2a+b)-(a+b)=2a+b-a-b=a là số nguyên=>a là số nguyên

Do a+b là số nguyên, mà a là số nguyên

=>b là số nguyên

Vậy f(x) luôn nhận giá trị nguyên với mọi x

20 tháng 3 2017

f(0) = c  là số nguyên

f(1) = a + b + c là số nguyên => a + b là số nguyên

f(2) = 4a + 2b + c = 2(a+b) + 2a +c là số nguyên => 2a là số nguyên