Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1+2+3+...+n=((n-1)+1)*n/2=n^2/2
1+3+5+...+(2n-1)=(((2n-1)-1)/2+1)*n/2=n^2/2
2+4+6+...+2n=((2n-2)/2+1)*n/2=n^2/2
1. Nhận xét rằng a là số tự nhiên lẻ và ab + 4 là một số chẵn.
Nếu d là một ước chung của a và ab + 4 ( d > 1), thì do a lẻ nên d phải là số lẻ.
Do ab chia hết cho d nên 4 chia hết cho d, suy ra d \(\in\) { 2; 4 }. (mâu thuẫn)..
b) Gọi d là ước chung lớn nhất của n + 2 và 3n + 11.
Suy ra \(\hept{\begin{cases}n+2⋮d\\3n+11⋮d\end{cases}\Rightarrow\hept{\begin{cases}3n+6⋮d\\3n+11⋮d\end{cases}}}\).
Suy ra \(3n+11-\left(3n+6\right)=5⋮d\).
Vì vậy d = 1 hoặc d = 5.
Để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau thì d = 1.
Nếu giả sử ngược lại \(\hept{\begin{cases}n+2⋮5\\3n+11⋮5\end{cases}}\) \(\Leftrightarrow n+2⋮5\).
Suy ra \(n\) chia 5 dư 3 hay n = 5k + 3.
Vậy để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau, thì n chia cho 5 dư 0, 1, 2, 4 hay n = 5k, n = 5k +1, n = 5k + 2, n = 5k + 4.
Giả sử : \(2n+3⋮d\)
\(n+2⋮d\)
\(\Rightarrow\left(2n+3\right)-\left(n+2\right)⋮d\)
\(\Leftrightarrow\left(2n+3\right)-2\left(n+2\right)⋮d\)
\(\Rightarrow-1⋮d\)
\(\Rightarrow d\inƯ\left(-1\right)=\left\{1;-1\right\}\)
\(\Rightarrow\frac{2n+3}{n+2}\) là phân số tối giản
Cho d là ước chung lớn nhất của 2n+ 3 và n + 2
=> ( 2n+3 ) - 2( n + 2 ) chia hết cho d
-1 chia hết cho d
Vậy 2n+3 / n + n tối giản .
Để thương là số tự nhiên
=> Các trường hợp (a) ; (b) ; (c) phải chia hết
a) n + 6 chia hết cho n - 4
n - 4 + 10 chia hết cho n - 4
=> 10 chia hết cho n - 4
=> n - 4 thuộc Ư(10) = {1 ; 2 ; 5 ; 10}
Xét 4 trường hợp ,ta có :
n - 4 = 1 => n = 5
n - 4 = 2 => n = 6
n - 4 = 5 => n = 9
n - 4 = 10 => n = 14
b) 2n + 12 chia hết cho n + 2
2n + 4 + 8 chia hết cho n + 2
2.(n + 2) + 8 chia hêt cho n + 2
=> 8 chia hết cho n + 2
=> n + 2 thuộc Ư(8) = {1 ; 2 ; 4; 8}
Còn lại giống câu a
c) không biết
A lớn hơn B là 2n + 20
Nếu n = 3 thì 4n + 27 = 39
2n + 7 = 13
39 chia hết cho 13 .
Vậy n = 3
cái này khó tui chết liền:
a, A=\(\frac{n\left(n+1\right)}{2}\)
b,B=\(n^2\)
c, C=\(\frac{\left(n+1\right)\left(n+2\right)}{2}\)