Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc với BC
=>OH*OA=OB^2=R^2
b: góc ABM=góc ACM
góc HBM=90 độ-góc OMB=90 độ-góc OBM=góc ABM
=>BM là phân giác của góc ABH
a) Hai tam giác vuông ABO và ACO có chung cạnh huyền AO nên A, B, O, C cùng thuộc đường tròn đường kính AO.
Vậy tứ giác ABOC là tứ giác nội tiếp.
b) Ta thấy ngay \(\Delta ABD\sim\Delta AEB\left(g-g\right)\)
\(\Rightarrow\frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AE.AD=AB^2\)
Xét tam giác vuông ABO có BH là đường cao nên áp dụng hệ thức lượng ta có:
\(AH.AO=AB^2\)
Suy ra AD.AE = AH.AO
c) Ta có \(\widehat{PIK}+\widehat{IKQ}+\widehat{P}+\widehat{Q}=360^o\)
\(\Rightarrow2\left(\widehat{PIO}+\widehat{P}+\widehat{OKQ}\right)=360^o\)
\(\Rightarrow\widehat{PIO}+\widehat{P}+\widehat{OKQ}=180^o\)
Mặt khác \(\widehat{PIO}+\widehat{P}+\widehat{IOP}=180^o\)
\(\Rightarrow\widehat{IOP}=\widehat{OKQ}\Rightarrow\Delta PIO\sim\Delta QOK\)
\(\Rightarrow\frac{IP}{PO}=\frac{OQ}{KQ}\Rightarrow PI.KQ=PO^2\)
Sử dụng bất đẳng thức Cô-si ta có:
\(IP+KQ\ge2\sqrt{IP.KQ}=2\sqrt{OP^2}=PQ\)
acje cho hỏi 2 tam giác đồng dạng ở câu b là góc nào í chỉ ro rõ cho e với ạk
Ta có: AB = AC (tính chất hai tiếp tuyến cắt nhau). Suy ra ∆ABC cân tại A.
AO là tia phân giác của góc BAC (tính chất hai tiếp tuyến cắt nhau)
Suy ra AO là đường cao của tam giác ABC (tính chất tam giác cân)
Ta có: AO vuông góc với BC tại H
Lại có: AB ⊥ OB (tính chất tiếp tuyến)
Tam giác ABO vuông tại B có BH ⊥ AO
Theo hệ thức lượng trong tam giác vuông, ta có:
O B 2 = OH.OA ⇒ OH = O B 2 /OA = 3 2 /5 = 1,8 (cm)
Tự vẽ hình
a) theo t/c 2 tiếp tuyến cắt nhau
=> AB =AC
mà OB =OC =R
=> OA là trung trực của BC => OA vuông góc BC tại H => H là trung điểm của BC => BH =BC/2 =15
Áp dụng Pi - ta -go cho HBO vuông tại H => OH2 = OB2 - BH2 = 172 - 152 =64 => OH =8
b) theo câu a => O;H;A thẳng hàng rồi
c)
neu du kha nag minh se lam
a, AC=AB= 12 cm.
b,BH= 60/13 cm