K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2020

a) dễ thấy A,O,B,C cùng thuộc đường tròn đường kính OC 

suy ra A,C,B,O,D thuộc đường tròn đường kính OC

Ta có : \(\widehat{BED}=\widehat{ECB}+\widehat{EBC}=\widehat{BAD}+\widehat{EAB}=\widehat{DAE}\)

b) vì AC = AB nên \(\widebat{AB}=\widebat{AC}\Rightarrow\widehat{ADE}=\widehat{EDB}\)

Xét \(\Delta ADE\)và \(\Delta EDB\)có :

\(\widehat{ADE}=\widehat{EDB}\)\(\widehat{DAE}=\widehat{BED}\)

\(\Rightarrow\Delta ADE~\Delta EDB\left(g.g\right)\Rightarrow\frac{AD}{DE}=\frac{ED}{BD}\Rightarrow DE^2=AD.BD\)

25 tháng 4 2020

ủa sao ko hiện hình lên.

6 tháng 3 2016

1. Để chứng minh cung DE có số đo không đổi, ta cần chứng minh góc \(\angle BOC\) có số đo không đổi. Thực vậy, theo tính chất hai tiếp tuyến cắt nhau,  OB và OC là phân giác ngoài của tam giác ABC. Ta có

 \(\angle BOC=180^{\circ}-\frac{\angle MBC}{2}-\frac{\angle NCB}{2}=\frac{\angle ABC}{2}+\frac{\angle ACB}{2}=90^{\circ}-\frac{\angle BAC}{2}=90^{\circ}-\frac{a}{2}\) 
Do đó góc \(\angle BOC\) có số đo không đổi. Suy ra cung DE có số đo không đổi. 

2.  Do CD vuông góc với AB nên BC,BD là đường kính của hai đường tròn (O) và (O'). Suy ra
 \(\angle CFB=\angle DEB=90^{\circ}\to\angle CFD=\angle CED=90^{\circ}.\)  Vậy tứ giác CDEF nội tiếp. Do đó \(\angle ECF=\angle EDF\to\angle FAB=\angle ECF=\angle EDF=\angle EDB\)
Vậy AB là phân giác của góc AEF.

3. Đề bài có chút nhầm lẫn, "kẻ \(IH\perp BC\) mới đúng. Do tam giác ABC nhọn và I nằm trong nên các điểm H,K,L nằm trên các cạnh của tam giác. Sử dụng bất đẳng thức \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2,\) ta suy ra \(AL^2+BL^2\ge\frac{1}{2}\left(AL+BL\right)^2=\frac{1}{2}AB^2.\)  Tương tự ta cũng có \(BH^2+CH^2\ge\frac{1}{2}BC^2,KC^2+KA^2\ge\frac{1}{2}AC^2.\)  Mặt khác theo định lý Pitago

\(AL^2+BH^2+CK^2=\left(IA^2-IL^2\right)+\left(IB^2-IH^2\right)+\left(IC^2-IK^2\right)\)
\(=\left(IA^2-IK^2\right)+\left(IB^2-IL^2\right)+\left(IC^2-IH^2\right)\)
\(=BL^2+CH^2+AK^2.\)

Thành thử \(AL^2+BH^2+CK^2=\frac{\left(AL^2+BL^2\right)+\left(BH^2+CH^2\right)+\left(CK^2+AK^2\right)}{2}\ge\frac{AB^2+BC^2+CA^2}{2}.\)
Dấu bằng xảy ra khi \(AL=BL,BH=CH,CK=AK\Leftrightarrow I\)  là giao điểm ba đường trung trực.

 

6 tháng 6 2016
Giúp mình đi mọi người
7 tháng 6 2016

Cô hướng dẫn nhé nguyen van vu :)

K

a. Ta có góc COD = COM + MOD = \(\frac{AOM}{2}+\frac{BOM}{2}=\frac{180}{2}=90^o\)

b. Dễ thấy E là trung điểm CD, O là trung điểm AB nên OE song song AC. Vậy OE vuông góc AB.

c. Gọi MH là đường thẳng vuông góc AB, Ta chứng minh BC, AD đều cắt MH tại trung điểm của nó.

Gọi I là giao của AM và BD. Đầu tiên chứng minh ID = DB. Thật vậy, góc MID=IMD (Cùng bằng cung AM/2)

nên ID =MD, mà MD=DB nên ID=DB.

Gọi K là giao của MH và AD.

Theo Talet , \(\frac{MK}{DI}=\frac{AK}{AD}=\frac{KH}{BD}\Rightarrow MK=KH\)

Tương tự giao điểm của BC với MH cũng là trung điểm MH.

Tóm lại N trùng K hay MN vuông góc AB.