K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 giups minh cau 1d, 2c , cam on nhieu1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.a) Chứng minh AEHF nội tiếpb) Chứng minh EC là tia phân giác của góc DEFc) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MDd) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của...
Đọc tiếp

 giups minh cau 1d, 2c , cam on nhieu

1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.

a) Chứng minh AEHF nội tiếp

b) Chứng minh EC là tia phân giác của góc DEF

c) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD

d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)

 e) Đường thẳng qua D  song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.

2. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE. 
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC 
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE 
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ. 
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng 

0
21 tháng 11 2018

các bạn giúp mình với ạ .mình cám ơn

4 tháng 1 2021

Góc HCF sao lại bằng góc FCA vậy mn ???

AH
Akai Haruma
Giáo viên
20 tháng 2 2019

Lời giải:

a) Xét đường tròn $(O)$ ta thấy:

\(\widehat{BCE}=\widehat{BAE}\) (góc nội tiếp cùng chắn cung $BE$)

\(\widehat{BAE}=\widehat{DBE}\) (góc nội tiếp chắn một cung thì bằng góc tạo bởi tiếp tuyến và dây cung đó)

\(\Rightarrow \widehat{BCE}=\widehat{DBE}\) (đpcm)

b) Vì $DB,DC$ là tiếp tuyến của $(O)$ nên:

\(DC\perp OC; DB\perp OB\Rightarrow \widehat{DCO}=\widehat{DBO}=90^0\)

Xét tứ giác $DCOB$ có tổng 2 góc đối \(\widehat{DCO}+\widehat{DBO}=90^0+90^0=180^0\) nên $DCOB$ là tứ giác nội tiếp, hay $O,B,D,C$ cùng thuộc một đường tròn.

c) Câu c bạn tham khảo tại Câu hỏi của Yến Tử - Toán lớp 9 | Học trực tuyến (phần c)

AH
Akai Haruma
Giáo viên
20 tháng 2 2019

Hình vẽ:

Violympic toán 9

19 tháng 2 2019

Nguyễn TrươngNguyễn Việt LâmNguyenKhôi Bùi Truong Viet TruongÁnh LêPhùng Tuệ Minhsaint suppapong udomkaewkanjanaDƯƠNG PHAN KHÁNH DƯƠNGArakawa WhiterNguyễn Huy TúAkai HarumaNguyễn Huy ThắngMashiro ShiinaMysterious Personsoyeon_Tiểubàng giảiVõ Đông Anh TuấnPhương AnTrần Việt Linh giúp em với ạ

19 tháng 2 2019

Cậu chịu khó vẽ hình ra nhé :vv