Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>ΔACD vuông tại C
mà CM là đường trung tuyến
nên CM=AD/2=AM=DM
Xét ΔMAO và ΔMCO có
MA=MC
MO chung
AO=CO
DO đó: ΔMAO=ΔMCO
Suy ra: \(\widehat{MAO}=\widehat{MCO}=90^0\)
hay MC là tiếp tuyến của (O)
b: Ta có: MC=MA
nên M nằm trên đường trung trực của AC(1)
Ta có: OC=OA
nên O nằm trên đường trung trực của AC(2)
Từ (1) và (2) suy ra OM là đường trung trực của AC
hay OM vuông góc với AC tại trung điểm của AC
Cô hướng dẫn nhé nguyen van vu :)
K
a. Ta có góc COD = COM + MOD = \(\frac{AOM}{2}+\frac{BOM}{2}=\frac{180}{2}=90^o\)
b. Dễ thấy E là trung điểm CD, O là trung điểm AB nên OE song song AC. Vậy OE vuông góc AB.
c. Gọi MH là đường thẳng vuông góc AB, Ta chứng minh BC, AD đều cắt MH tại trung điểm của nó.
Gọi I là giao của AM và BD. Đầu tiên chứng minh ID = DB. Thật vậy, góc MID=IMD (Cùng bằng cung AM/2)
nên ID =MD, mà MD=DB nên ID=DB.
Gọi K là giao của MH và AD.
Theo Talet , \(\frac{MK}{DI}=\frac{AK}{AD}=\frac{KH}{BD}\Rightarrow MK=KH\)
Tương tự giao điểm của BC với MH cũng là trung điểm MH.
Tóm lại N trùng K hay MN vuông góc AB.
a, ta có: IN=IM;AI=IC(gt)
suy ra ANCM là hình bình hành
mà ACvuông với MN tại I suy ra ANCM là hình thoi
b, ta có góc INB+NBI=90°(1)
góc DBC+BCD=90°(2)
mà góc BCD=IAN(ANCM là hình thoi)
và góc IAN=INB(cùng phụ với NBA)
suy ra góc INB=BCD(3)
từ 1,2,3 suy ra góc NBI=DBC
suy ra N,B,D thẳng hàng(đpcm)
c, ta có góc IND=ICD(cmt)
suy ra INCD nội tiếp( hai góc bằng nhau cùng chắn cung ID)(đpcm)
d, ta có góc BDO' +O'DC=90°(1)
mà góc O'DC=O'CD(tam giác DCO' cân tại O')
mà góc NCI=ICD(ANCD là hình thoi)
suy ra góc NCI=O'DC
mà góc NCI=NDI( NCDI nội tiếp)
suy ra góc NDI=O'DC(2)
từ 1,2 suy ra NDI+BDO'=90°
suy ra ID là tiếp tuyến của (O')(đpcm)
Bài ni làm sao bạn🤔🤔