Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tứ giác MNKC nội tiếp do bốn đỉnh đều thuộc đường tròn đường kính KC.
b) Ta có \(\Delta IMK\sim\Delta INC(g.g)\) nên \(IM.IC=IN.IK\).
c) D là trực tâm của tam giác ICK nên \(\widehat{IEK}=90^o\) , mà IK là đường kính của (O) nên E thuộc (O).
Các tứ giác NDEK, NDMI nội tiếp nên \(\widehat{MND}=\widehat{MID}=90^o-\widehat{ICK}=\widehat{DKE}=\widehat{DNE}\). Suy ra NC là phân giác của góc MNE.
d) Theo phương tích ta có \(DM.DK=DA.DB\). Áp dụng bđt AM - GM:
\(DM.DK=DA.DB\le\dfrac{\left(DA+DB\right)^2}{4}=\dfrac{AB^2}{4}\) không đổi.
Đẳng thức xảy ra khi và chỉ khi DA = DB, tức \(M\equiv I\).
Vậy...
Gọi C là điểm chính giữa cung AB của nửa đường tròn tâm O đường kính AB, M là điểm bất kì trên cung BC. Kẻ CH vuông góc với AM tại H, I là giao của OH và BC, MI cắt nửa đường tròn tâm O tại D
a. CMR: CM // DB
b. Xác định vị trí của M để D,H,B thẳng hàng
c. E là giao của AD và MB. CM: EC//DM
B O A C D K H E
a, Xét tứ giác AKCH có: \(\widehat{AKC}+\widehat{AHC}=90+90=180\)=> tứ gác AKCH nội tiếp
b,Tứ giác AKCH nội tiếp => \(\widehat{HCK}=\widehat{HAD}\)(góc trong và góc ngoài đỉnh đối diện)
Mặt khác: \(\widehat{HAD}=\widehat{BCD}=\frac{1}{2}sđ\widebat{BD}\)
=> \(\widehat{BCD}=\widehat{ACD}\)=> CD là phân giác \(\widehat{KCB}\)
c, Tứ giác AKCH nội tiếp: => \(\widehat{CKE}=\widehat{CAH}\)
Mà: \(\widehat{CDB}=\widehat{CAH}=\frac{1}{2}sđ\widebat{BC}\)
=> \(\widehat{CKE}=\widehat{CDE}\)=> tứ giác CKDE nội tiếp
=> \(\widehat{CKD}+\widehat{CED}=180\Rightarrow\widehat{CED}=180-\widehat{CKD}=180-90=90\)
=> \(CE⊥BD\)(ĐPCM)
d, em xem lại xem có gõ sai đề không nhé
Câu d) Khi C di chuyển trên cung nhỏ̉ AB. Xác định vị trí C để CK.AD+CE.DB có giá trị lớn nhất.
Nhờ mọi người giải dùm e với.