K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2016

A B C D E O

Gọi DE là đường kính của (O;R) 

Dễ thấy \(\hept{\begin{cases}AC\perp BD\\BE\perp BD\end{cases}}\)\(\Rightarrow BE\text{//}AC\Rightarrow BECA\)là hình thang mà BECA nội tiếp (O;R) nên BECA là hình thang cân.

Do đó ta có : AB = CE \(\Rightarrow AB^2+CD^2=CE^2+CD^2=DE^2=\left(2R\right)^2=4R^2\) không đổi.

Vậy ta có điều phải chứng minh.

20 tháng 9 2016

A B C D M E O

Gọi E là điểm đối xứng với C qua tâm O của đường tròn

Dễ dàng chứng minh được ABED là hình thang cân.

=> BD = AE

Ta có : \(MA^2+MB^2+MC^2+MD^2=\left(MA^2+MC^2\right)+\left(MB^2+MD^2\right)=AC^2+BD^2\)

\(=AC^2+AE^2=CE^2=\left(2R\right)^2=4R^2\) KHÔNG ĐỔI.

9 tháng 7 2019

Làm sao để chứng minh cái dễ dàng mà bạn nói vậy :v

3 tháng 2 2020

Xét \(\Delta COM\)và \(\Delta CED\)có:

     \(\widehat{COM}=\widehat{CED}=90^0\)

     \(\widehat{ECD}\): góc chúng

Do đó \(\Delta COM\)\(\approx\Delta CED\left(g.g\right)\)

\(\Rightarrow\frac{CO}{CE}=\frac{CM}{CD}\Leftrightarrow CM.CE=CO.CD=R.2R=2R^2\)(1)

\(\Delta OBD\)vuông tại O nên \(BD^2=OB^2+OD^2\)(định lý Pythagoras)

\(=R^2+R^2=2R^2\)(2)

Từ (1) và (2) suy ra \(CM.CE+BD^2=2R^2+2R^2=4R^2\)

3 tháng 2 2020

điểm N lm j z bạn

21 tháng 4 2015

Hướng dẫn cách làm

13 tháng 4 2017

kẻ đường cao AH

xét tam giác AEH

1 tháng 6 2020

tự làm là hạnh phúc của mỗi công dân.