Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hai tam giác vuông ABO và ACO có chung cạnh huyền AO nên A, B, O, C cùng thuộc đường tròn đường kính AO.
Vậy tứ giác ABOC là tứ giác nội tiếp.
b) Ta thấy ngay \(\Delta ABD\sim\Delta AEB\left(g-g\right)\)
\(\Rightarrow\frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AE.AD=AB^2\)
Xét tam giác vuông ABO có BH là đường cao nên áp dụng hệ thức lượng ta có:
\(AH.AO=AB^2\)
Suy ra AD.AE = AH.AO
c) Ta có \(\widehat{PIK}+\widehat{IKQ}+\widehat{P}+\widehat{Q}=360^o\)
\(\Rightarrow2\left(\widehat{PIO}+\widehat{P}+\widehat{OKQ}\right)=360^o\)
\(\Rightarrow\widehat{PIO}+\widehat{P}+\widehat{OKQ}=180^o\)
Mặt khác \(\widehat{PIO}+\widehat{P}+\widehat{IOP}=180^o\)
\(\Rightarrow\widehat{IOP}=\widehat{OKQ}\Rightarrow\Delta PIO\sim\Delta QOK\)
\(\Rightarrow\frac{IP}{PO}=\frac{OQ}{KQ}\Rightarrow PI.KQ=PO^2\)
Sử dụng bất đẳng thức Cô-si ta có:
\(IP+KQ\ge2\sqrt{IP.KQ}=2\sqrt{OP^2}=PQ\)
acje cho hỏi 2 tam giác đồng dạng ở câu b là góc nào í chỉ ro rõ cho e với ạk
a: Xét tứ giác ABOC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
nên ABOC là tứ giác nội tiếp
=>A,B,O,C cùng thuộc một đường tròn
b: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại H
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2\)
mà OB=OD(=R)
nên \(OH\cdot OA=OD^2\)
=>\(\dfrac{OH}{OD}=\dfrac{OD}{OA}\)
Xét ΔOHD và ΔODA có
\(\dfrac{OH}{OD}=\dfrac{OD}{OA}\)
\(\widehat{HOD}\) chung
Do đó: ΔOHD đồng dạng với ΔODA
a: ΔOED cân tại O
mà OF là trung tuyến
nên OF vuông góc ED
=>OF vuông góc EA
góc OFA=góc OBA=góc OCA=90 độ
=>O,F,C,A,B cùng thuộc 1 đường tròn
b: Xét ΔICD và ΔIBC có
góc ICD=góc IBC
góc CID chung
=>ΔICD đồng dạng với ΔIBC
=>IC/IB=ID/IC
=>IC^2=IB*ID
Xét ΔIAD và ΔIBA có
góc IDA=góc IAB
góc AID chung
=>ΔIAD đồng dạng với ΔIBA
=>IA/IB=ID/IA
=>IA^2=IB*ID
=>IA=IC
=>I là trung điểm của AC
Cho đường tròn (O), đường kính AB. Trên tiếp tuyến của (O) tại A lấy điểm M (M khác A). Từ M kẻ cát tuyến MCD (C nằm ở giữa M và D; tia MC nằm giữa MA và MO) và tiếp tuyến thứ hai MI (I là tiếp điểm) với đường tròn (O). Đường thẳng BC và BD cắt đường thẳng OM lần lượt tại E và F. Chứng minh:
O là trung điểm của EF
a: OH*OA=OB^2=R^2
b: ΔOCD cân tại O
mà OM là trung tuyến
nên OM vuông góc với CD
Xét tứ giác OMBA có
góc OMA=góc OBA=90 độ
nên OMBA là tứ giác nội tiếp
c: Xét ΔOHE vuông tại H và ΔOMA vuông tại M có
góc MOA chung
Do đó: ΔOHE đồng dạng với ΔOMA
=>OH/OM=OE/OA
=>OM*OE=OH*OA=R^2=OC^2=OD^2
=>ΔODE vuông tại D
=>DE là tiếp tuyến của (O)
a: Xét tứ giác ABOC có \(\widehat{ABO}+\widehat{ACO}=90^0+90^0=180^0\)
nên ABOC là tứ giác nội tiếp
=>A,B,O,C cùng thuộc một đường tròn
b: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AO là đường trung trực của BC
=>AO\(\perp\)BC tại trung điểm H của BC
Gọi K là giao điểm của OS và ED
Xét (O) có
SE,SD là các tiếp tuyến
Do đó: SE=SD
=>S nằm trên đường trung trực của ED(3)
Ta có: OE=OD
=>O nằm trên đường trung trực của ED(4)
Từ (3) và (4) suy ra SO là đường trung trực của ED
=>SO\(\perp\)ED tại trung điểm K của ED
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2=R^2\left(5\right)\)
Xét ΔODS vuông tại D có DK là đường cao
nên \(OK\cdot OS=OD^2=R^2\left(6\right)\)
Từ (5) và (6) suy ra \(OH\cdot OA=OK\cdot OS\)
=>\(\dfrac{OH}{OK}=\dfrac{OS}{OA}\)
Xét ΔOHS và ΔOKA có
\(\dfrac{OH}{OK}=\dfrac{OS}{OA}\)
góc HOS chung
Do đó: ΔOHS đồng dạng với ΔOKA
=>\(\widehat{OHS}=\widehat{OKA}\)
=>\(\widehat{OHS}=90^0\)
=>HO\(\perp\)SH tại H
mà HO\(\perp\)BH tại H
và SH,BH có điểm chung là H
nên S,H,B thẳng hàng
mà H,B,C thẳng hàng
nên S,B,H,C thẳng hàng
=>S,B,C thẳng hàng