K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
a) Do \(OA=OB\) (2 bán kính)
=> Tam giác OAB cân tại O
Mà OH là đường trung tuyến
=> OH cũng là đường cao ứng với AB
=> OH vuông góc AB.
(VẬY TA CÓ ĐPCM).
b) Có: góc CDA là góc nội tiếp chắn nửa đường tròn
=> góc CDA = 90 độ
=> CD vuông góc AD
Xét tam giác CAK vuông tại A (gt) và AD vuông góc CK (CMT)
=> Áp dụng HTL thì: \(CD.CK=CA^2=2\left(OA\right)^2=4R^2\)
VẬY TA CÓ ĐPCM.
c) Có: \(sinC=\frac{AD}{AC};cosC=\frac{CD}{AC}\)
=> \(2R.sinC.cosC=2R.\left(\frac{AD.CD}{AC^2}\right)=2R.\left(\frac{AD.CD}{CD.CK}\right)=2R.\left(\frac{AD}{CK}\right)\) (HTL: \(AC^2=CD.CK\))
=> \(\frac{AD^2}{2R.sinC.cosC}=\frac{AD^2}{\frac{2R.AD}{CK}}=\frac{AD^2.CK}{2R.AD}=\frac{AD.CK}{2R}=\frac{AD.CK}{AC}\)
Áp dụng tiếp tục HTL ta được:
=> \(AD.CK=AC.AK\)
=> \(VP=\frac{AC.AK}{AC}=AK\)
VẬY TA CÓ ĐPCM.
Câu d nhaaaaaaaaa !!!!!
Có: OA; OB là 2 tiếp tuyến của O và cắt nhau tại K
=> Áp dụng tính chất 2 tiếp tuyến cắt nhau ta được:
=> OK vuông góc với AB.
Tương tự thì: OC và OD cũng là 2 tiếp tuyến của O và cắt nhau tại E
=> Áp dụng tính chất 2 tiếp tuyến cắt nhau ta được:
=> OE vuông góc với CD.
* Áp dụng HTL vào tam giác OAK vuông tại A có AH vuông góc với OK:
=> \(OH.OK=OA^2\)
* Áp dụng HTL vào tam giác OCE vuông tại C có CI vuông góc với OE:
=> \(OI.OE=OC^2\)
Mà: \(OA=OE\) {2 BÁN KÍNH CỦA (O)}
=> \(OH.OK=OI.OE\)
(VẬY TA CÓ ĐPCM).