Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) MN = AN = 1/2 AC (đường trung tuyến ứng với cạnh huyền trong tam giác AMC vuông tại M)
tam giác AON = tam giác MON (c.c.c)
=> góc OMN = 90đ hay OM vuông góc NM => NM là tiếp tuyến
c) có NM Là tiếp tuyến (câu b)
=> góc O1= góc O2 , góc O3 = góc O4 (t/c hai tiếp tuyến cắt nhau)
có O1+O2+O3+O4 = 180đ
=> O2+O3 = 90đ
=> tam giác NOD vuông tại O
Xét tam giác vuông NOD, đường cao OM
=> tam giác OMN đồng dạng với tam giác DMO
=> \(\frac{NM}{OM}=\frac{OM}{MD}\)
=>\(\frac{AN}{OM}=\frac{OM}{DB}\)
=> AN.BD=\(R^2\)
d) có AN.BD=\(R^2\)
=> 2AN . BD = 2 R.R
=>AC.BD = AB . OA
=>\(\frac{AC}{AB}=\frac{OA}{BD}\)
=> tam giác AOC đồng dạng với tam giác BDA
=>góc AOC = góc ADB
Gọi K là giao điểm của AD và OC
=> tam giác AOK đồng dạng ADB (g.g)
=>góc OKA = góc DBA = 90đ
=> \(AD\perp OC\)
a/ Xét tam giác ABC nội tiếp đường tròn (O) có AB là đường kính của đường tròn nên tam giác ABC là tam giác vuông(Nếu một tam giác có một cạnh là đường kính của đường tròn ngoại tiếp tam giác đó.....)
b/ Vì D là giao điểm hai tiếp tuyến tại A và C của đường tròn (O) nên: DA=DC
D1=D2(t/c 2 tiếp tuyến cắt nhau)
Xét tam giác DHA=DHC(c.g.c).....nênH1=H2
Mà H1+H2=180....nên H1=H2=90...
a) \(\Delta ABM\) nội tiếp đường tròn (O) có bán kính AB
=> \(\Delta ABM\) vuông tại M
b) Xét \(\Delta ABM\) vuông tại M, đường cao MH
=> \(AB^2+BH^2=25\)
=> AB =5
Ta có: MH .BC = MA.MB
=> MH =2,4
c) \(\Delta AMC\) vuông tại M, MN là tiếp tuyến
=> MN = NA= NC =AC/2
Xét \(\Delta OAN\) và \(\Delta OMN\) có:
OA =OH =R
ON chung
NA = NM
=> \(\Delta OAN=\Delta OMN\)
=> \(\widehat{OAN}=\widehat{OMN}=90^o\)
=> MN \(\perp\) OM
mà M thuộc (O)
=> MN là tiếp tuyến của (O)
d) Ta có: ON là tia phân giác \(\widehat{AOM}\)
OD là phân giác góc BOM
\(\widehat{AOM}=\widehat{BOM}\) (kề bù)
=> ON\(\perp\)OD
Xét \(\Delta NOD\) vuông tại O, đường cao OM
\(OM^2=NA.DB=>R^2=NA.DB\) (đpcm)