K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: CM=CA và OC là tia phân giác của góc MOA(1)

Xét (O) có

DM là tiếp tuyến

DB là tiếp tuyến

Do đó: DM=DB và OD là tia phân giác của góc MOB(2)

Ta có: CD=CM+MD

nên CD=CA+DB

b: Từ (1) và (2) suy ra \(\widehat{COD}=\dfrac{180^0}{2}=90^0\)

15 tháng 10 2020

MONG CÁC BẠN GIÚP MÌNH GIẢI CÂU NÀY!!

6 tháng 6 2016
Giúp mình đi mọi người
7 tháng 6 2016

Cô hướng dẫn nhé nguyen van vu :)

K

a. Ta có góc COD = COM + MOD = \(\frac{AOM}{2}+\frac{BOM}{2}=\frac{180}{2}=90^o\)

b. Dễ thấy E là trung điểm CD, O là trung điểm AB nên OE song song AC. Vậy OE vuông góc AB.

c. Gọi MH là đường thẳng vuông góc AB, Ta chứng minh BC, AD đều cắt MH tại trung điểm của nó.

Gọi I là giao của AM và BD. Đầu tiên chứng minh ID = DB. Thật vậy, góc MID=IMD (Cùng bằng cung AM/2)

nên ID =MD, mà MD=DB nên ID=DB.

Gọi K là giao của MH và AD.

Theo Talet , \(\frac{MK}{DI}=\frac{AK}{AD}=\frac{KH}{BD}\Rightarrow MK=KH\)

Tương tự giao điểm của BC với MH cũng là trung điểm MH.

Tóm lại N trùng K hay MN vuông góc AB.

21 tháng 1 2022

a. Theo tc 2 tt cắt nhau: \(AC=AM;BM=BD\)

\(\Rightarrow AC+BD=AM+BM=AB\)

b. \(\left\{{}\begin{matrix}\widehat{AMO}=\widehat{ACO}=90^0\\AC=AM\\AO.chung\end{matrix}\right.\Rightarrow\Delta AOC=\Delta AOM \)

\(\Rightarrow\widehat{COA}=\widehat{AOM}=\dfrac{1}{2}\widehat{COM}\)

\(\left\{{}\begin{matrix}\widehat{ODB}=\widehat{OMB}=90^0\\BD=MB\\OB.chung\end{matrix}\right.\Rightarrow\Delta OBD=\Delta OBM\\ \Rightarrow\widehat{DOB}=\widehat{BOM}=\dfrac{1}{2}\widehat{DOM}\)

\(\Rightarrow\widehat{AOB}=\widehat{AOM}+\widehat{BOM}=\dfrac{1}{2}\left(\widehat{COM}+\widehat{DOM}\right)=\dfrac{1}{2}\cdot180^0=90^0\\ \Rightarrow\Delta OAB\text{ vuông tại O}\)

c. Áp dụng HTL: \(AM\cdot MB=OM^2=R^2\)

Mà \(CD=2R;AM=AC;BM=BD\)

Vậy \(AC\cdot BD=AM\cdot BM=R^2=\left(\dfrac{CD}{2}\right)^2=\dfrac{CD^2}{4}\)