K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABOC có

góc OBA+góc OCA=180 độ

nên OBAC là tứ giác nội tiếp

b: Xét (O) có

AB,AC là tiếp tuyến

nên AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc với BC

 

a: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1),(2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

Xét ΔOBA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2=R^2\)

b: Ta có: \(\widehat{ABI}+\widehat{OBI}=\widehat{OBA}=90^0\)

\(\widehat{HBI}+\widehat{OIB}=90^0\)(ΔHBI vuông tại H)

mà \(\widehat{OBI}=\widehat{OIB}\)

nên \(\widehat{ABI}=\widehat{HBI}=\widehat{CBI}\)

=>BI là phân giác của góc ABC

Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AO là phân giác của góc BAC

Xét ΔBAC có

AH,BI là các đường phân giác

AH cắt BI tại I

Do đó: I là tâm đường tròn nội tiếp ΔBAC

13 tháng 1 2024

a, Để chứng minh \(OH \times OA = \pi^2\), chúng ta có thể sử dụng định lí thứ ba của đường tròn và định lí Euclid về tiếp tuyến và tiếp tuyến ngoại tiếp. 

 

Gọi \(R\) là bán kính của đường tròn, \(O\) là tâm của đường tròn, \(A\) là điểm nằm ngoài đường tròn, \(B\) và \(C\) là các điểm tiếp tuyến từ \(A\) đến đường tròn. \(H\) là giao điểm giữa \(OA\) và \(BC\).

 

Theo định lí thứ ba của đường tròn, ta có \(OH\) là đoạn trung bình của \(OA\) trong tam giác \(OAB\). Điều này có nghĩa là \(OH\) là trung bình hòa của các phần bằng nhau \(OA\) và \(OB\).

 

\(OA = OB = R\) (bán kính của đường tròn).

 

\(OH = \frac{OA + OB}{2} = \frac{2R}{2} = R\).

 

Vậy, \(OH = R\).

 

Để chứng minh \(OH \times OA = \pi^2\), ta có \(OH \times OA = R \times R = R^2\).

 

Nhưng theo định nghĩa, \(R\) là bán kính của đường tròn, nên \(R^2\) chính là \(\pi^2\) (bán kính mũ hai). Vì vậy, \(OH \times OA = \pi^2\).

 

b, Để chứng minh \(I\) là tâm của đường tròn nội tiếp tam giác \(ABC\), chúng ta có thể sử dụng các định lí về tiếp tuyến và tiếp tuyến ngoại tiếp.

 

Gọi \(I\) là giao điểm của \(OA\) với đường tròn. Khi đó, theo định lí về tiếp tuyến ngoại tiếp, \(OA\) vuông góc với \(AB\) tại \(B\) và \(OA\) vuông góc với \(AC\) tại \(C\).

 

Vì OA là đường trung trực của BC (do H là giao điểm giữa OA và BC, nên OH cũng là đường trung trực của BC.)

 

Nếu I là tâm của đường tròn nội tiếp tam giác ABC, thì OI cũng là đường trung trực của BC

 

Do đó, OHvà OI là cùng một đường trung trực của BC, nên OH = OI.

 

Vậy, I là tâm của đường tròn nội tiếp tam giác ABC.

28 tháng 11 2023

Cách làm như thế nào ạ

a) Xét tứ giác OBAC có 

\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối

\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: OBAC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

hay O,B,A,C cùng thuộc 1 đường tròn(đpcm)

17 tháng 12 2021

Từ điểm A ở ngoài đường tròn [O;R] vẽ hai tiếp tuyến AB;AC với đường tròn [B,C là tiếp điểm ]. Gọi H là chân đường vuông góc kẻ từ B đến đường kính CD.

a cm 4 điểm A,B,C,O cùng thuộc 1 đường tròn

b cm BD //OA