K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 5 2020

Đường tròn (C) tâm \(I\left(1;1\right)\) bán kính \(R=1\)

Gọi \(M\left(m;m+3\right)\) \(\Rightarrow\) đường tròn (C') tâm M có bán kính \(R'=2\)

Do (C) và (C') tiếp xúc ngoài

\(\Rightarrow IM=R+R'=3\)

\(\overrightarrow{IM}=\left(m-1;m+2\right)\Rightarrow\left(m-1\right)^2+\left(m+2\right)^2=9\)

\(\Leftrightarrow m^2+m-2=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(1;4\right)\\M\left(-2;1\right)\end{matrix}\right.\)

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

NV
9 tháng 4 2021

Do tâm (C) thuộc \(\Delta\) nên có dạng: \(I\left(-2a-3;a\right)\)

\(d\left(I;d\right)=R\Leftrightarrow\dfrac{\left|-2a-3-a+1\right|}{\sqrt{1^2+\left(-1\right)^2}}=\sqrt{2}\)

\(\Leftrightarrow\left|3a+2\right|=2\Rightarrow\left[{}\begin{matrix}a=0\\a=-\dfrac{4}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}I\left(-3;0\right)\\I\left(-\dfrac{1}{3};-\dfrac{4}{3}\right)\end{matrix}\right.\)

Có 2 đường tròn thỏa mãn: \(\left[{}\begin{matrix}\left(x+3\right)^2+y^2=2\\\left(x+\dfrac{1}{3}\right)^2+\left(y+\dfrac{4}{3}\right)^2=2\end{matrix}\right.\)

(C): x^2+y^2+4x-2y-4=0

=>(x+2)^2+(y-1)^2=9

=>I(-2;1); R=3

M thuộc d nên M(a;1-a)

M nằm ngoài (C) nên IM>R

=>IM^2>9

=>2a^2+4a-5>0

MA^2=MB^2=IM^2-IA^2=(a+2)^2+(-a)^2-9=2a^2+4a-5

=>x^2+y^2-2ax+2(a-1)y-6a+6=0(1)

A,B thuộc (C)

=>Tọa độ A,B thỏa mãn phương trình:

 x^2+y^2+4x-2y-4=0(2)

(1)-(2)=(a+2)x-ay+3a-5=0(3)

Tọa độ A,B thỏa mãn (3) nên (3) chính là phương trình đường thẳng AB

(E) tiếp xúc AB nên (E): R1=d(E,AB)

Chu vi của (E) lớn nhất khi R1 lớn nhất

=>d(E;AB) lớn nhất

Gọi H là hình chiếu vuông góc của E lên AB

=>d(E,Δ)=EH<=EK=căn 10/2

Dấu = xảy ra khi H trùng K

=>AB vuông góc EK

vecto EK=(-1/2;3/2), AB có VTCP là (a;a+2)

AB vuông góc EK

=>-1/2a+3/2(a+2)=0

=>a=-3

=>M(-3;4)

NV
22 tháng 4 2021

a.

\(R=d\left(A;d\right)=\dfrac{\left|3+1-2\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\)

Phương trình đường tròn:

\(\left(x-3\right)^2+\left(y-1\right)^2=2\)

b.

Tiếp tuyến d' qua O nên có dạng: \(ax+by=0\)

d' tiếp xúc (C) nên \(d\left(A;d'\right)=R\)

\(\Leftrightarrow\dfrac{\left|3a+b\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\Leftrightarrow\left(3a+b\right)^2=2a^2+2b^2\)

\(\Leftrightarrow7a^2+6ab-b^2=0\Rightarrow\left(a+b\right)\left(7a-b\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b=0\\7a-b=0\end{matrix}\right.\) chọn \(\left[{}\begin{matrix}\left(a;b\right)=\left(1;-1\right)\\\left(a;b\right)=\left(1;7\right)\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}x-y=0\\x+7y=0\end{matrix}\right.\)

NV
22 tháng 4 2021

c.

Gọi M là trung điểm EF

\(\Rightarrow AM\perp EF\Rightarrow AM=d\left(A;d\right)=\sqrt{2}\)

\(S_{AEF}=\dfrac{1}{2}AM.EF=6\Rightarrow AM.EF=12\)

\(\Rightarrow EF=\dfrac{12}{\sqrt{2}}=6\sqrt{2}\)

\(\Rightarrow EM=\dfrac{EF}{2}=3\sqrt{2}\)

Áp dụng Pitago:

\(R'=AE=\sqrt{EM^2+AM^2}=2\sqrt{5}\)

31 tháng 5 2021

1.

\(\left(C\right):x^2+y^2-2x-4=0\)

\(\Leftrightarrow\left(x-1\right)^2+y^2=5\)

Đường tròn \(\left(C\right)\) có tâm \(I=\left(1;0\right)\), bán kính \(R=\sqrt{5}\)

Phương trình đường thẳng \(d_1\) có dạng: \(x+y+m=0\left(m\in R\right)\)

Mà \(d_1\) tiếp xúc với \(\left(C\right)\Rightarrow d\left(I;d_1\right)=\dfrac{\left|1+m\right|}{\sqrt{2}}=\sqrt{5}\)

\(\Leftrightarrow\left|m+1\right|=\sqrt{10}\)

\(\Leftrightarrow m=-1\pm\sqrt{10}\)

\(\Rightarrow\left[{}\begin{matrix}d_1:x+y-1+\sqrt{10}=0\\d_1:x+y-1-\sqrt{10}=0\end{matrix}\right.\)

31 tháng 5 2021

2.

Phương trình đường thẳng \(\Delta\) có dạng: \(x-y+m=0\left(m\in R\right)\)

Ta có: \(d\left(I;\Delta\right)=\sqrt{R^2-\dfrac{MN^2}{4}}=2\)

\(\Leftrightarrow\dfrac{\left|m+1\right|}{\sqrt{2}}=2\)

\(\Leftrightarrow m=-1\pm2\sqrt{2}\)

\(\Rightarrow\left[{}\begin{matrix}\Delta:x-y+1+2\sqrt{2}=0\\\Delta:x-y+1-2\sqrt{2}=0\end{matrix}\right.\)

21 tháng 7 2018

Đáp án A

- Do M thuộc d  suy ra M( t; -1-t).

 Nếu 2 tiếp tuyến vuông góc với nhau thì MAIB là hình vuông

(A; B là 2 tiếp điểm).

Do đó:

- Ta có :

- Do đó :  2t2+ 8= 12