Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do tâm (C) thuộc \(\Delta\) nên có dạng: \(I\left(-2a-3;a\right)\)
\(d\left(I;d\right)=R\Leftrightarrow\dfrac{\left|-2a-3-a+1\right|}{\sqrt{1^2+\left(-1\right)^2}}=\sqrt{2}\)
\(\Leftrightarrow\left|3a+2\right|=2\Rightarrow\left[{}\begin{matrix}a=0\\a=-\dfrac{4}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}I\left(-3;0\right)\\I\left(-\dfrac{1}{3};-\dfrac{4}{3}\right)\end{matrix}\right.\)
Có 2 đường tròn thỏa mãn: \(\left[{}\begin{matrix}\left(x+3\right)^2+y^2=2\\\left(x+\dfrac{1}{3}\right)^2+\left(y+\dfrac{4}{3}\right)^2=2\end{matrix}\right.\)
(C): x^2+y^2+4x-2y-4=0
=>(x+2)^2+(y-1)^2=9
=>I(-2;1); R=3
M thuộc d nên M(a;1-a)
M nằm ngoài (C) nên IM>R
=>IM^2>9
=>2a^2+4a-5>0
MA^2=MB^2=IM^2-IA^2=(a+2)^2+(-a)^2-9=2a^2+4a-5
=>x^2+y^2-2ax+2(a-1)y-6a+6=0(1)
A,B thuộc (C)
=>Tọa độ A,B thỏa mãn phương trình:
x^2+y^2+4x-2y-4=0(2)
(1)-(2)=(a+2)x-ay+3a-5=0(3)
Tọa độ A,B thỏa mãn (3) nên (3) chính là phương trình đường thẳng AB
(E) tiếp xúc AB nên (E): R1=d(E,AB)
Chu vi của (E) lớn nhất khi R1 lớn nhất
=>d(E;AB) lớn nhất
Gọi H là hình chiếu vuông góc của E lên AB
=>d(E,Δ)=EH<=EK=căn 10/2
Dấu = xảy ra khi H trùng K
=>AB vuông góc EK
vecto EK=(-1/2;3/2), AB có VTCP là (a;a+2)
AB vuông góc EK
=>-1/2a+3/2(a+2)=0
=>a=-3
=>M(-3;4)
a.
\(R=d\left(A;d\right)=\dfrac{\left|3+1-2\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\)
Phương trình đường tròn:
\(\left(x-3\right)^2+\left(y-1\right)^2=2\)
b.
Tiếp tuyến d' qua O nên có dạng: \(ax+by=0\)
d' tiếp xúc (C) nên \(d\left(A;d'\right)=R\)
\(\Leftrightarrow\dfrac{\left|3a+b\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\Leftrightarrow\left(3a+b\right)^2=2a^2+2b^2\)
\(\Leftrightarrow7a^2+6ab-b^2=0\Rightarrow\left(a+b\right)\left(7a-b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a+b=0\\7a-b=0\end{matrix}\right.\) chọn \(\left[{}\begin{matrix}\left(a;b\right)=\left(1;-1\right)\\\left(a;b\right)=\left(1;7\right)\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}x-y=0\\x+7y=0\end{matrix}\right.\)
c.
Gọi M là trung điểm EF
\(\Rightarrow AM\perp EF\Rightarrow AM=d\left(A;d\right)=\sqrt{2}\)
\(S_{AEF}=\dfrac{1}{2}AM.EF=6\Rightarrow AM.EF=12\)
\(\Rightarrow EF=\dfrac{12}{\sqrt{2}}=6\sqrt{2}\)
\(\Rightarrow EM=\dfrac{EF}{2}=3\sqrt{2}\)
Áp dụng Pitago:
\(R'=AE=\sqrt{EM^2+AM^2}=2\sqrt{5}\)
1.
\(\left(C\right):x^2+y^2-2x-4=0\)
\(\Leftrightarrow\left(x-1\right)^2+y^2=5\)
Đường tròn \(\left(C\right)\) có tâm \(I=\left(1;0\right)\), bán kính \(R=\sqrt{5}\)
Phương trình đường thẳng \(d_1\) có dạng: \(x+y+m=0\left(m\in R\right)\)
Mà \(d_1\) tiếp xúc với \(\left(C\right)\Rightarrow d\left(I;d_1\right)=\dfrac{\left|1+m\right|}{\sqrt{2}}=\sqrt{5}\)
\(\Leftrightarrow\left|m+1\right|=\sqrt{10}\)
\(\Leftrightarrow m=-1\pm\sqrt{10}\)
\(\Rightarrow\left[{}\begin{matrix}d_1:x+y-1+\sqrt{10}=0\\d_1:x+y-1-\sqrt{10}=0\end{matrix}\right.\)
2.
Phương trình đường thẳng \(\Delta\) có dạng: \(x-y+m=0\left(m\in R\right)\)
Ta có: \(d\left(I;\Delta\right)=\sqrt{R^2-\dfrac{MN^2}{4}}=2\)
\(\Leftrightarrow\dfrac{\left|m+1\right|}{\sqrt{2}}=2\)
\(\Leftrightarrow m=-1\pm2\sqrt{2}\)
\(\Rightarrow\left[{}\begin{matrix}\Delta:x-y+1+2\sqrt{2}=0\\\Delta:x-y+1-2\sqrt{2}=0\end{matrix}\right.\)
Đáp án A
- Do M thuộc d suy ra M( t; -1-t).
Nếu 2 tiếp tuyến vuông góc với nhau thì MAIB là hình vuông
(A; B là 2 tiếp điểm).
Do đó:
- Ta có :
- Do đó : 2t2+ 8= 12
Đường tròn (C) tâm \(I\left(1;1\right)\) bán kính \(R=1\)
Gọi \(M\left(m;m+3\right)\) \(\Rightarrow\) đường tròn (C') tâm M có bán kính \(R'=2\)
Do (C) và (C') tiếp xúc ngoài
\(\Rightarrow IM=R+R'=3\)
\(\overrightarrow{IM}=\left(m-1;m+2\right)\Rightarrow\left(m-1\right)^2+\left(m+2\right)^2=9\)
\(\Leftrightarrow m^2+m-2=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(1;4\right)\\M\left(-2;1\right)\end{matrix}\right.\)