K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC...
Đọc tiếp

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông
2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân
3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại E. CM DE =DB +EC
4. CHO TAM GIÁC ABC VUÔNG TẠI A và góc B =60°. Cx vuông góc với BC, trên tia Cx lấy đoạn CE=CA ( CE, CA CÙNG PHÍA VỚI BC ). KÉO DÀI CB LẤY F : BF =BA. CM TAM GIÁC ABC ĐỀU VÀ 3 ĐIỂM E, A, F THẲNG HÀNG
5. Cho tam giác ABD : góc B=2D, kẻ AH vuông góc với BD  (H thuộc BD ). Trên tia đối của tia BA lấy BE =BH. Đường thẳng EH cắt AD tại F. CM FH=FA =FD
6. Cho tam giác ABC cân tại A, đường cao AH. Trên tia AH lấy điểm D sao cho H là trung điểm của đoạn thẳng AD. Nối CD. CM CD=AB và CB là tia phân giác của góc ACD
7. CHO tam giác ABC cân tại A, đường cao BH. CMR góc BAC =2 CBH
8. Cho tam giác ABC có góc B =60, 2 tia phân giác AD và CE của tam giác cắt nhau tại I. CMR tam giác IDE cân
9. Cho tam giác ABC cân tại A, đường cao AH, HD, HE lần lượt là đường cao của tam giác AHB, AHC. trên tia đối của tia DH, EH lấy điểm M, N: DM=DB,  EN =EH.CMR: a) tam giác AMN và tam giác HMN cân b) góc MAN=2BAC

1
21 tháng 3 2016

vẽ hình ra nhé

6 tháng 4 2018

a) Xét hai tam giác vuông ABC và tam giác vuông ADC có:

Cạnh AC chung

BA = DA

\(\Rightarrow\Delta ABC=\Delta ADC\)   (Hai cạnh góc vuông)

\(\Rightarrow BC=DC\)

Hay tam giác BCD cân tại C.

b) Xét tam giác BKN và tam giác CDN có:

BN = CN

\(\widehat{BNK}=\widehat{CND}\)   (Đối đỉnh)

\(\widehat{KBN}=\widehat{DCN}\)   (So le trong)

\(\Rightarrow\Delta BKN=\Delta CDN\left(g-c-g\right)\)

\(\Rightarrow DN=KN\)

c) Do AM // BC nên \(\widehat{MAC}=\widehat{BCA}\)  

Mà \(\widehat{BCA}=\widehat{ACM}\) nên \(\widehat{MAC}=\widehat{MCA}\Rightarrow MA=MC\)

Từ đó ta cũng có \(\widehat{DAM}=\widehat{MDA}\Rightarrow MD=MA\)

Vậy nên MD = MC hay M là trung điểm DC

Xét tam giác DBC có DN, CA, BM là các đường trung tuyến nên chúng đồng quy tại một điểm.

Lại có AC giao N tại O nên O thuộc BM hay B, M, O thẳng hàng.

17 tháng 8 2018

Bài giải : 

a) Xét hai tam giác vuông ABC và tam giác vuông ADC có:

Cạnh AC chung

BA = DA

⇒ΔABC=ΔADC   (Hai cạnh góc vuông)

⇒BC=DC

Hay tam giác BCD cân tại C.

b) Xét tam giác BKN và tam giác CDN có:

BN = CN

^BNK=^CND   (Đối đỉnh)

^KBN=^DCN   (So le trong)

⇒ΔBKN=ΔCDN(g−c−g)

⇒DN=KN

c) Do AM // BC nên ^MAC=^BCA  

Mà ^BCA=^ACM nên ^MAC=^MCA⇒MA=MC

Từ đó ta cũng có ^DAM=^MDA⇒MD=MA

Vậy nên MD = MC hay M là trung điểm DC

Xét tam giác DBC có DN, CA, BM là các đường trung tuyến nên chúng đồng quy tại một điểm.

Lại có AC giao N tại O nên O thuộc BM hay B, M, O thẳng hàng.

4 tháng 4 2018

lên mạng mà tra

15 tháng 7 2016

a) xét tam giác ABC và tam giác DMC có:

CA=CD

góc ACB= góc DCM ( đối đỉnh)

BC=CM

=> tam giác ABC=tam giác DMC (c.g.c)

b) theo a) tam giác ABC=tam giác DMC=> góc A= góc D

mà đây là 2 góc so le trong nên MD//AB

c) Xét tam giác ICB và tam giác NCM có:

góc B= góc M ( tam giác ABC= tam giác DMC)

BC=MC

góc ICB= góc NCM ( đối đỉnh)

=> tam giác ICB= tam giác NCM(  g.c.g)

=> IB=MN

Mà AB=MD ( tam giác ABC= tam giác DMC)

=> AB-IB= MD-MN

=> AI=ND

14 tháng 12 2019

Cảm ơn bạn Hằng Lê Nguyệt