K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2015

mình muốn giúp bạn lắm nhưng mình chưa học đến

**** !!!

Giúp mìk với nha mn!!!! kamsa nhiều ạk!!!! BÀI  6.Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.a) Chứng minh ΔAHB = ΔDBH.b) Chứng minh AB//HD.c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.d) Tính góc ACB , biết góc BDH= 350 .Bài 7 :Cho tam giác ABC cân...
Đọc tiếp

Giúp mìk với nha mn!!!! kamsa nhiều ạk!!!! 

BÀI  6.

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 7 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

  1. Chứng minh : DB = EC.
  2. Gọi O là giao điểm của BD và  EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
  3. Chứng minh rằng : DE // BC.

Bài 8 :

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

  1. Chứng minh : CD // EB.
  2. Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF

Bài 9 :

Cho tam giác ABC vuông tại A có góc B=60 độ . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

  1. Tam giác  ACE đều.
  2. A, E, F thẳng hàng.

 

1
14 tháng 2 2016

moi hok lop 6 thoi

28 tháng 5 2017

a) Ta có: AC vừa là trung tuyến vừa là đường cao của tam giác CBD

=> Tam giác CDB cân tại C

b) Ta có: AM song song với BC(gt) và A là trung điểm của DB

=> M cũng là trung điểm của CD (Định lý về đường trung bình)

c) M là trung điểm của CD (theo câu b) và N là trung điểm của CB(gt)

=> MN là đường trung bình của tam giác CBD => MN // DB

28 tháng 5 2017

\(4.\)- Vì \(\Delta CBD\)cân tại \(C\)(cmt)  \(\Rightarrow\) \(CA\)là tia phân giác \(\widehat{BCD}\)
                                                         \(\Rightarrow\) \(\widehat{BCD}=2.\widehat{BCA}=2.30^0=60^0\)
- Xét \(\Delta BCA\)vuông tại \(A\) \(\Rightarrow\) \(\widehat{ABC}+\widehat{BCA}=90^0\)                   
                                              \(\Rightarrow\)\(\widehat{ABC}=90^0-\widehat{BCA}=90^0-30^0=60^0\)
- Xét \(\Delta CBD\)có \(\widehat{BCD}=60^0;\)\(\widehat{ABC}=60^0\) \(\Rightarrow\) \(\Delta CBD\)đều
- Xét  \(\Delta CBD\)đều  có:
  \(\cdot\) \(M\)là trung điểm của \(DC\) (cmt)   suy ra  \(BM\) là đường trung tuyến của \(DC\)
  \(\cdot\) \(A\) là trung điểm của \(DB\) (gt)      suy ra  \(CA\) là đường trung tuyến của \(DB\)
mà   \(BM\)cắt \(CA\) tại \(G\)  (gt)  suy ra \(G\)là trọng tâm của \(\Delta CBD\)
     nên  \(BG=2.GM=2.3=6\left(cm\right)\)
- Vì    \(\Delta CBD\)đều nên \(BM=CA\)suy ra \(GA=GM=3cm\)
- Xét \(\Delta ABG\) vuông tại \(A\)theo định lý Py-ta-go,
   ta được:           \(AB^2=BG^2-AG^2=6^2-3^2=27\)(cm)
                \(\Rightarrow\)  \(AB=\sqrt{27}\)       

 

16 tháng 4 2017

Áp dụng định lí py ta go trong tam giác ABC ta có:

AB2+AC2=BC2

62+82=102

36+64=100

Suy ra tam giác ABC vuông (giải hộ câu a thôi tự nghĩ đi)