Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ACBD có
AC//BD
AC=BD
Do đó: ACBD là hình bình hành
Suy ra: AD=BC
b: Ta có: ACBD là hình bình hành
nên AD//BC
c:
Ta có: CE+EB=CB
FD+AF=AD
mà CB=AD
và CE=FD
nên EB=AF
Xét tứ giác EBFA có
EB//AF
EB=AF
Do đó: EBFA là hình bình hành
Suy ra:EF và BA cắt nhau tại trung điểm của mỗi đường
mà O là trung điểm của AB
nên O là trung điểm của FE
Mình cũng đang cần . Ai bt chỉ mình với , link cũng đc nhé. Thank you.
1: Xét tứ giác ACBD có
AC//BD
AC=BD
=>ACBD là hbh
=>O là trung điểm chung của AB và CD
2: Xét tứ giác AEBF có
AF//BE
AF=BE
=>AEBF là hbh
=>O là trung điểm của EF
a)Vì BN=AC mà AC=AM'
=> BN=AM' (tính chất bắc cầu)
vì BN=AM', AB=AB
=>AN=BM'
Vì BN'=BC mà BC=AM
=>BN'=AM
Vì BN'=AM, AB=AB
=>AN'=BM
Vì BN=AC ,AM=BC
=>MC=NC
b) mình chịu
Bạn tự vẽ hình nha
Câu a
Chứng minh : Kẻ OC cắt BD tại E
Xét ΔCAO và ΔEBO có :
ˆA=^OBE (=1v)
AO=BO (gt)
^COA=^BOE (đối đỉnh)
⇒ΔCAO=ΔEBO (cgv - gn )
⇒OC=OE ( hai cạnh tương ứng )
và AC=BE ( hai cạnh tương ứng )
Xét ΔOCD và ΔOED có :
OC=OE (c/m trên )
^COD=^DOE ( = 1v )
OD chung
⇒ΔOCD=ΔOED (cgv - cgv )
⇒CD=DE (hai cạnh tương ứng )
mà DE = BD + BE
và AC = BE ( c/m trên )
⇒CD=AC+BD
a) Vẽ tia CO cắt tia đối của tia By tại E
Xét tam giác vuông AOC và tam giác vuông BOE có :
AO = OB ( gt )
AOC = BOE ( 2 góc đối đỉnh )
\(\implies\) tam giác vuông AOC = tam giác vuông BOE ( cạnh huyền - góc nhọn )
\(\implies\) AC = BE ( 2 cạnh tương ứng )
Xét tam giác vuông DOC và tam giác vuông DOE có :
OD chung
OC = OE ( tam giác vuông AOC = tam giác vuông BOE )
\(\implies\) tam giác vuông DOC = tam giác vuông DOE ( 2 cạnh góc vuông )
\(\implies\) CD = ED ( 2 cạnh tương ứng )
Mà ED = EB + BD
\(\implies\) ED = AC + BD
\(\implies\) CD = AC + BD
b) Xét tam giác DOE vuông tại O có :
OE2 + OD2 = DE2 ( Theo định lý Py - ta - go )
Xét tam giác BOE vuông tại B có :
OB2 + BE2 = OE2 ( Theo định lý Py - ta - go ) ( * )
Xét tam giác BOD vuông tại B có :
OB2 + BD2 = OD2 ( Theo định lý Py - ta - go ) ( ** )
Cộng ( * ) với ( ** ) vế với vế ta được :
OE2 + OD2 = 2. OB2 + EB2 + DB2
Mà OE2 + OD2 = DE2 ( cmt )
\(\implies\) DE2 = 2. OB2 + EB2 + DB2
= 2. OB2 + EB . ( DE - BD ) + DB . ( DE - BE )
= 2. OB2 + EB . DE - EB . BD + DB . DE - DB . BE
= 2. OB2 + ( EB . DE + DB . DE ) - 2 . BD . BE
= 2. OB2 + DE . ( EB + DB ) - 2 . BD . BE
= 2. OB2 + DE2 - 2 . BD . BE
\(\implies\) 2. OB2 - 2 . BD . BE = 0
\(\implies\) 2. OB2 = 2 . BD . BE
\(\implies\) OB2 = BD . BE
Mà BE = AC ( cmt ) ; OB = AB / 2 ( gt )
\(\implies\) AC . BD = ( AB / 2 )2
\(\implies\) AC . BD = AB2 / 4
A B x y o C E D F AE = BF
Thứ nhất phải nói, công cụ vẽ hình quá sơ sài :)
a/ cm C, O , D thẳng hàng.
Xét tam giác AOC và tam giác BOD ta có:
AO = OB(O là trung điểm của AB) (1)
AC = BD (gt) (2)
góc CAO = góc DBO (2 góc so le trong , Ax//By) (3)
Từ (1),(2),(3) => tam giác AOC và tam giác BOD (c-g-c)
=> góc AOC = góc BOD (2 góc tương ứng).
Ta có :
góc AOC + góc COD = 1800 (2 góc kề bù) (1)
góc AOC = góc BOD (cmt) (2)
Từ (1),(2) => góc BOD + góc COD = 1800
=> góc COD = 1800
=> C, O , D thẳng hàng.
C/m E,O,F thẳng hàng.
bạn tự chứng minh theo cách trên.
b/ cm DE = CF và DE// CF
Ta có :
AE = BF (gt) (1)
AC = BD (gt) (2)
Từ (1),(2)=> AE - AC = BF - BD
=> CE = DF
Xét tam giác DEC và tam giác CFD ta có:
CD = CD (cạnh chung) (1)
CE = FD (cmt) (2)
góc ECD = góc FDC (2 góc so le trong, Ax//By) (3)
Từ (1),(2),(3) => tam giác DEC = tam giác CFD (c-g-c)
=> DE = CF (2 cạnh tương ứng)
Ta có :
góc CDE = góc DCF ( tam giác DEC = tam giác CFD)
mà góc CDE và góc DCF nằm ở vị trí so le trong
nên DE //CF
Xét tứ giác ABDC có
AC//BD
AC=BD
Do đó: ABDC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABDC là hình chữ nhật
Suy ra: DA=BC