K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2017

B O A C D K H E

a, Xét tứ giác AKCH có: \(\widehat{AKC}+\widehat{AHC}=90+90=180\)=> tứ gác AKCH nội tiếp

b,Tứ giác AKCH nội tiếp => \(\widehat{HCK}=\widehat{HAD}\)(góc trong và góc ngoài đỉnh đối diện)

Mặt khác: \(\widehat{HAD}=\widehat{BCD}=\frac{1}{2}sđ\widebat{BD}\)

=> \(\widehat{BCD}=\widehat{ACD}\)=> CD là phân giác \(\widehat{KCB}\)

c,  Tứ giác AKCH nội tiếp: => \(\widehat{CKE}=\widehat{CAH}\)

Mà: \(\widehat{CDB}=\widehat{CAH}=\frac{1}{2}sđ\widebat{BC}\)

=> \(\widehat{CKE}=\widehat{CDE}\)=> tứ giác CKDE nội tiếp

=> \(\widehat{CKD}+\widehat{CED}=180\Rightarrow\widehat{CED}=180-\widehat{CKD}=180-90=90\)

=> \(CE⊥BD\)(ĐPCM)

d, em xem lại xem có gõ sai đề không nhé

16 tháng 8 2018

Câu d) Khi C di chuyển trên cung nhỏ̉ AB. Xác định vị trí C để CK.AD+CE.DB có giá trị lớn nhất. 

Nhờ mọi người giải dùm e với.

4 tháng 2 2020

+) Kẻ \(OI\perp MN;OK\perp PQ\)

\(MI^2=OM^2-OI^2\Rightarrow MN^2=4R^2-4OI^2\)

\(PK^2=OP^2-OK^2\Rightarrow PQ^2=4R^2-4OK^2\)

\(\Rightarrow MN^2+PQ^2=8R^2-4\left(OI^2+OK^2\right)=8R^2-4OH^2\)

Áp dụng đẳng thức: \(x^2+y^2=\frac{\left(x+y\right)^2}{2}+\frac{\left(x-y\right)^2}{2}\)

Ta có: \(MN^2+PQ^2=\frac{\left(MN+PQ\right)^2}{2}+\frac{\left(MN-PQ\right)^2}{2}\)

\(\Leftrightarrow\left(MN+PQ\right)^2=2\left(MN^2+PQ^2\right)-\left(MN-PQ\right)^2\)

\(\Leftrightarrow MN+PQ=\sqrt{8\left(2R^2-OH^2\right)-\left(MN-PQ\right)^2}\)

Do \(8\left(2R^2-OH^2\right)\)không đổi nên

\(\left(MN+PQ\right)_{min}\Leftrightarrow\left(MN-PQ\right)^2_{max}\Leftrightarrow\hept{\begin{cases}MN_{max}\\PQ_{min}\end{cases}}\)hoặc \(\hept{\begin{cases}MN_{min}\\PQ_{max}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}MN=2R\\PQ\perp AB\left(H\right)\end{cases}}\)hoặc \(\Leftrightarrow\hept{\begin{cases}PQ=2R\\MN\perp AB\left(H\right)\end{cases}}\)

+) \(\left(MN+PQ\right)_{max}\Leftrightarrow\left(MN-PQ\right)^2_{min}\)\(\Leftrightarrow MN=PQ\Leftrightarrow OI=OK\Rightarrow\widehat{MHA}=\widehat{PHA}=45^0\)

7 tháng 9 2023

a) Để chứng minh KC = KD, ta sử dụng tính chất của đường tròn và đường thẳng vuông góc. Vì CD là đường thẳng vuông góc với AB tại I, nên OC là đường phân giác của góc ACB. Tương tự, OD là đường phân giác của góc ADB. Do đó, OC và OD cắt nhau tại O và là đường phân giác chung của góc ACB và ADB. Vì OC và OD cắt nhau tại O, nên O là trung điểm của CD. Do đó, KC = KD.

b) Để xác định vị trí điểm I để diện tích tứ giác ACBD lớn nhất, ta cần tìm điểm I sao cho diện tích tứ giác ACBD đạt giá trị lớn nhất. Để làm điều này, ta có thể sử dụng phương pháp đạo hàm để tìm điểm I tương ứng với giá trị cực đại của diện tích tứ giác ACBD.

30 tháng 12 2020

Gọi M, N lần lượt là trung điểm của AB, CD.

Ta có: \(P=AB+CD=2AM+2CN=2\sqrt{R^2-OM^2}+2\sqrt{R^2-ON^2}\).

Ta dễ dàng chứng minh được \(OM^2+ON^2=OI^2\).

Do đó: \(P=2\left(\sqrt{R^2-OM^2}+\sqrt{R^2-ON^2}\right)\le2\sqrt{2\left(R^2-OM^2+R^2-ON^2\right)}=2\sqrt{2\left(2R^2-OI^2\right)}\).

Đẳng thức xảy ra khi và chỉ khi \(OM=ON\), tức AB tạo với OI một góc 

30 tháng 12 2020

Dạ em cảm ơn ạ

 

a: Gọi OK là khoảng cách từ O đến AB

Suy ra: OK\(\perp\)AB tại K

Xét \(\left(O\right)\) có 

OK là một phần đường kính

AB là dây

OK\(\perp\)AB tại K

Do đó: K là trung điểm của AB

Suy ra: \(KA=KB=\dfrac{AB}{2}=12\left(cm\right)\)

Áp dụng định lí Pytago vào ΔOKA vuông tại K, ta được:

\(OA^2=OK^2+KA^2\)

\(\Leftrightarrow OK^2=13^2-12^2=25\)

hay OK=5cm

23 tháng 8 2021

a, Kẻ OH \(\perp\)AB 

=> OH là đường trung tuyến 

=> \(AH=\frac{AB}{2}=\frac{24}{2}=12\)cm 

Theo định lí Pytago tam giác OHA vuông tại H 

\(OH=\sqrt{AO^2-AH^2}=5\)cm