Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>A
tỉ số đồng dạng bằng tỉ số chu vi, trung tuyến, phân giác, đường cao
ta có : ΔABC~ΔDEF (gt)
=>\(\dfrac{AB}{DE}=\dfrac{AC}{DF}=\dfrac{BC}{\text{EF}}=k\)
=> DE = 3:2= 1,5 (cm)
DF = 4:2 = 2 (cm)
BC = 5:2 = 2,5 (cm )
=> Chu vi tam giác DEF = DE+DF+BC = 1,5+2+2,5 = 6(CM)
Ta có:
\(\dfrac{AB}{DE}=2;\dfrac{AC}{DF}=2;\dfrac{BC}{EF}=2\)
\(\Leftrightarrow\dfrac{3}{DE}=2;\dfrac{4}{DF}=2;\dfrac{5}{EF}=2\)
\(\Leftrightarrow DE=\dfrac{3}{2};DF=\dfrac{4}{2};EF=\dfrac{5}{2}\)
\(\Rightarrow C_{DEF}=\dfrac{3}{2}+\dfrac{4}{2}+\dfrac{5}{2}=\dfrac{12}{2}=6\left(cm\right)\)
a) BE // DC => ∆BEF ∽ ∆CDF
AD // BF => ∆ADE ∽ ∆BFE.
Do đó: ∆ADE ∽ ∆CFD
b) BE = AB - AE = 12 - 8 = 4cm
∆ADE ∽ ∆BFE => \(\dfrac{AE}{BE}=\dfrac{AD}{BF}=\dfrac{DE}{FD}\)
=> \(\dfrac{8}{4}=\dfrac{7}{BF}=\dfrac{10}{EF}\)
=> BF = 3,5 cm.
EF = 5 cm.
3
A C B H Có tam giác ABC đồng dạng với tam giác A'B'C'(gt)
Nên \(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}=k\)
Xét tam giác A'B'H' và tam giác ABH có:
góc A'H'B' = góc ABH (=90o)
góc A'B'H'= góc ABH (vì tam giác ABC đồng dạng với tam giác A'B'C')
Nên tam giác A'B'H' đồng dạng với tam giác ABH (g.g)
Do vậy \(\dfrac{A'H'}{AH}=\dfrac{A'B'}{AB}=k\)
2/
A B C M
Có tam giác ABC đồng dạng với tam giác A'B'C'(gt)
Nên \(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}=k\) (1)
và \(\)góc B'A'M' = góc BAM \(\left(=\dfrac{1}{2}B'A'C'=\dfrac{1}{2}BAC\right)\) (2)
Xét tam giác A'B'M' và tam giác ABC có:
góc B'A'M' = góc BAM (từ 2)
góc A'B'M' = góc ABM (tam giác ABC đồng dạng với tam giác A'B'C')
Nên tam giác A'B'M' đồng dạng với tam giác ABM (g.g)
Do vậy \(\dfrac{A'M'}{AM}=\dfrac{A'B'}{AB}=k\) (từ 1)
3/
A B C M
Có tam giác ABC đồng dạng với tam giác A'B'C'(gt)
Nên \(\dfrac{A'B'}{AB}=\dfrac{B'C'}{BC}=\dfrac{\dfrac{B'C'}{2}}{\dfrac{BC}{2}}=\dfrac{B'M'}{BM}\) (1)
Xét tam giác A'B'M' và tam giác ABM có:
\(\dfrac{A'B'}{AB}=\dfrac{B'M'}{BM}\) (từ 1)
góc A'B'M' = góc ABM (tam giác ABC đồng dạng với tam giác A'B'C')
Nên tam giác A'B'M' đồng dạng với tam giác ABM (c.g.c)
Do vậy \(\dfrac{A'M'}{AM}=\dfrac{A'B'}{AB}=k\)
Chọn A