Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lightning FarronHung nguyenMysterious PersonHàn Thiên BăngNguyễn Huy ThắngNguyễn Việt LâmLuân ĐàoUnruly KidKhôi Bùi tran nguyen bao quanDƯƠNG PHAN KHÁNH DƯƠNGMa Đức MinhNguyễn Trí HùngDương NguyễnLê Nguyễn Ngọc NhiNguyễn Huy TúAkai HarumaRibi Nkok Ngok
a: AB/EF=4/8
BC/DF=1/2
AC/DE=1/2
=>AB/EF=BC/DF=AC/DE
=>ΔABC đồng dạng vơi ΔEFD
b: \(\dfrac{BC}{DE}=\dfrac{3}{4}=\dfrac{AB}{EF}=\dfrac{AC}{DF}\)
=>ΔBCA đồng dạng với ΔEDF
c: EF/AB=2/3
DF/BC=2/3
ED/AC=12/18=2/3
=>EF/AB=FD/BC=ED/AC
=>ΔEFD đồng dạg với ΔABC
d: AB=3k; BC=4k; AC=5k
DE=3h; EF=4h; DF=5h
=>AB/DE=BC/EF=AC/DF=k/h
=>ΔABC đồng dạng với ΔDEF
D E F I K O
a) Xét \(\Delta vuôngKEDva\Delta vuôngDEF\) có:
\(\widehat{E:}chung\)
\(\Rightarrow\Delta KED\) đồng dạng \(\Delta DEF\)
b) Vì \(\Delta KED\) đồng dạng \(\Delta DEF\) (1)
\(\Rightarrow\frac{KE}{DE}=\frac{DE}{EF}\Rightarrow DE.DE=KE.EF\Rightarrow DE^2=KE.EF\)
b2) Xét \(\Delta VuôngKFD\) và \(\Delta vuôngDEF\)có :
\(\widehat{F:}chung\)
\(\Rightarrow\Delta KFD\) đồng dạng \(\Delta DEF\) (2)
từ (1) và (2) suy ra \(\Delta KED\) đồng dạng \(\Delta KFD\)
\(\Rightarrow\frac{EK}{DK}=\frac{DK}{KF}\Rightarrow DK.DK=KE.KF\Rightarrow DK^2=KE.KF\)
b3) xin lỗi mình chưa bt cách làm
c) \(\Delta DEF\) là tam giác vuông nên:
\(EF^2=DE^2.DF^2\)
\(EF=\sqrt{DE^2.DF^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
Vì EI là đường phân giác của\(\Delta DEF\)
\(\Rightarrow\) \(\frac{DI}{DE}=\frac{IF}{EF}\Rightarrow DI=\frac{DE.IF}{EF}=\frac{3.4}{5}=2,4\left(cm\right)\)
DF=ID+IF\(\Rightarrow IF=DF-DI=4-2,4=1,6\left(cm\right)\)
Vì \(\Delta KED\) đồng dạng \(\Delta DEF\) nên:
\(\frac{DK}{DF}=\frac{DE}{EF}\Rightarrow DK=\frac{DF.DE}{EF}=\frac{4.3}{5}=2,4\left(cm\right)\)
d) Ta có \(DE^2=KE.EF\)
suy ra \(\frac{DE}{KE}=\frac{EF}{DE}\) (4)
Mà \(\frac{DE}{KE}=\frac{OK}{OD}\)( EO là đường phân giác của \(\Delta KED\)) (5)
Lại có \(\frac{EF}{DE}=\frac{IF}{DI}Hay\frac{DE}{EF}=\frac{DI}{IF}\)( EI là đường phân giác của \(\Delta DEF\)) (6)
Từ (4),(5),(6) suy ra \(\frac{DI}{IF}=\frac{OK}{OD}\)
ta có : ΔABC~ΔDEF (gt)
=>\(\dfrac{AB}{DE}=\dfrac{AC}{DF}=\dfrac{BC}{\text{EF}}=k\)
=> DE = 3:2= 1,5 (cm)
DF = 4:2 = 2 (cm)
BC = 5:2 = 2,5 (cm )
=> Chu vi tam giác DEF = DE+DF+BC = 1,5+2+2,5 = 6(CM)
Ta có:
\(\dfrac{AB}{DE}=2;\dfrac{AC}{DF}=2;\dfrac{BC}{EF}=2\)
\(\Leftrightarrow\dfrac{3}{DE}=2;\dfrac{4}{DF}=2;\dfrac{5}{EF}=2\)
\(\Leftrightarrow DE=\dfrac{3}{2};DF=\dfrac{4}{2};EF=\dfrac{5}{2}\)
\(\Rightarrow C_{DEF}=\dfrac{3}{2}+\dfrac{4}{2}+\dfrac{5}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Xét tam giác ABC và tam giác DFE
Có : AB/EF=6/12=1/2
AC/FE=9/18=1/2
BC/DE=12/24=1/2
=>AB/DF=AC/FE =BC/DE=1/2
=>tam giác ABC đồng đang với tam giác DFE(c.c.c)
bài1
a) EF=??
b) không đồng dạng
c) không đồng dạng
d) Đồng dạng (vì sao thì bạn nhắn cho mình nha)
các cặp góc bằng nhau ABC=DEF; BCA=EFD; CAB=FDE
bài 2
a) theo tính chất đường trung bình trong mỗi tam giác (không hiểu thì nhắn cho mình)
ta có MN=1/2AB => MN/AB=1/2 (1)
NM=1/2BC => NP/BC=1/2 (2)
MP=1/2AC => MP/AC=1/2 (3)
từ (1),(2),(3) => MNP đồng dạng với ABC
b) vì MNP đồng dạng với ABC với tỉ số k là 2 ( theo câu a)
nên chu vi ABC = 2 lần chu vi MNP =40cm
1: ΔABC\(\sim\)ΔEFD
2: ΔBCA\(\sim\)ΔEDF
3: ΔABC\(\sim\)ΔFED
4: ΔABC\(\sim\)ΔDEF
Câu 1: D
Câu 2: A
1D
2A