Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a1}{a2}=\frac{a2}{a3}=....=\frac{a2014}{a2015}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\)
=>\(\frac{a1}{a2}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\left(1\right)\)
\(\frac{a2}{a3}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\left(2\right)\)
...........
\(\frac{a2014}{a2015}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\left(2014\right)\)
Nhân (1),(2),....(2014) vế với vế:
\(\frac{a_1}{a_2}.\frac{a_2}{a_3}............\frac{a_{2014}}{a_{2015}}=\frac{a_1}{a_{2015}}=\left(\frac{a_1+a_2+...+a_{2014}}{a_2+a_3+...+a_{2015}}\right)^{2014}\)
Vậy...
Có:
a1+a2=a3+a4=...=a2015+a1=1
=>a1+a2+a3+a4+...+a2014+a2015=1007+a2015
Mà 1007+a2015=0
=>a2015=-1007.
=>a1=1--1007
a1=1008.
Chúc học tốt^^
Có:
a1+a2=a3+a4=...=a2015+a1=1
=>a1+a2+a3+a4+...+a2014+a2015=1007+a2015
Mà 1007+a2015=0
=>a2015=-1007.
=>a1=1--1007
a1=1008.
Chúc học tốt^^
Khi chia bốn số a1 , a2 , a3 , a4 cho số 3 thì theo nguyên lý Direclet sẽ có ít nhất 2 số có cùng số dư
=> Hiệu của chúng chia hết cho 3 => Tích đã cho chia hết cho 3.
Ta sẽ chứng minh tích đã cho cũng chia hết cho 4.
Xét tính chẵn, lẻ của bốn số đã cho, có 3 khả năng sau:
TH1: cả 4 số đều chẵn (hoặc đều lẻ), khi đó hiệu của từng cặp hai số chia hết cho 2 => Tích đã cho chia hết cho 26 => Tích chia hết cho 4
TH2: Có 3 số chẵn (hoặc lẻ) còn 1 số còn lại là lẻ (hoặc chẵn). Giả sử 3 số chẵn (hoặc lẻ) đó là x, y và z thì x - y và x - z đều chia hết cho 2 => Tích đã cho chia hết cho 4
TH3: Có 2 số chẵn (giả sử là x và y) và 2 số lẻ (giả sử là z và t), khi đó x - y và z - t đều chia hết cho 2 => Tích đã cho chia hết cho 4.
KL: Tích đã cho chia hết cho 3 và 4 => Nó chia hết cho 12.