Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét thấy dãy số theo quy luật:
Số hạng thứ I: 3 = 3 + 15 x 0
Số hạng thứ II: 18 = 3 + 15 x 1
Số hạng thứ III: 48 = 3 + 15 x 1 + 15 x 2 = 3 + 15 x (1 + 2)
Số hạng thứ IV: 93 = 3 + 15 x 1 + 15 x 2 + 15 x 3 = 3 + 15 x (1 + 2 + 3)
........
Số hạng thứ 100:
3 + 15 x 1 + 15 x 2 + 15 x 3 +...+ 15 x 99 = 3 + 15 x (1 + 2 + 3 +...+ 99)
= 3 + 15 x (99 + 1) x 99 : 2 = 74253
b) 11703 = 3 + 15 x (1 + 2 +...+ n)
=> 15 x (1 + 2 +...+ n) = 11700
=> 1 + 2 +...+ n = 780
=> n x (n + 1) = 780 x 2
=> n x (n + 1) = 39 x 40
=> n = 39
Vậy: Số 11703 là số hạng thứ 40 của dãy.
mk nha
a) Xét thấy dãy số theo quy luật:
Số hạng thứ I: 3 = 3 + 15 x 0
Số hạng thứ II: 18 = 3 + 15 x 1
Số hạng thứ III: 48 = 3 + 15 x 1 + 15 x 2 = 3 + 15 x (1 + 2)
Số hạng thứ IV: 93 = 3 + 15 x 1 + 15 x 2 + 15 x 3 = 3 + 15 x (1 + 2 + 3)
........
Số hạng thứ 100:
3 + 15 x 1 + 15 x 2 + 15 x 3 +...+ 15 x 99 = 3 + 15 x (1 + 2 + 3 +...+ 99)
= 3 + 15 x (99 + 1) x 99 : 2 = 74253
b) 11703 = 3 + 15 x (1 + 2 +...+ n)
=> 15 x (1 + 2 +...+ n) = 11700
=> 1 + 2 +...+ n = 780
=> n x (n + 1) = 780 x 2
=> n x (n + 1) = 39 x 40
=> n = 39
Vậy: Số 11703 là số hạng thứ 40 của dãy.
a) Xét thấy dãy số theo quy luật:
Số hạng thứ I: 3 = 3 + 15 x 0
Số hạng thứ II: 18 = 3 + 15 x 1
Số hạng thứ III: 48 = 3 + 15 x 1 + 15 x 2 = 3 + 15 x (1 + 2)
Số hạng thứ IV: 93 = 3 + 15 x 1 + 15 x 2 + 15 x 3 = 3 + 15 x (1 + 2 + 3)
........
Số hạng thứ 100:
3 + 15 x 1 + 15 x 2 + 15 x 3 +...+ 15 x 99 = 3 + 15 x (1 + 2 + 3 +...+ 99)
= 3 + 15 x (99 + 1) x 99 : 2 = 74253
b) 11703 = 3 + 15 x (1 + 2 +...+ n)
=> 15 x (1 + 2 +...+ n) = 11700
=> 1 + 2 +...+ n = 780
=> n x (n + 1) = 780 x 2
=> n x (n + 1) = 39 x 40
=> n = 39
Số 11703 là số thứ 40 của dãy
a/ số hạng thứ 100 là:
b/ ta có 10 số hạng đầu tiên là: 2,11,29,56,92,137,191,251,314,386.
2+11+29+56+92+137+191+252+314+386
=1470
a) Số hạng số 100 của dãy sô trên là:
( 100-1 ) x 0,4 + 0,1 = 39,7
b) Tổng 100 số hạng đầu tiên của dãy số trên là:
( 0,1+39,7 ) x 100 : 2 = 1990
Đáp số : a) 39,7
b) 1990
2; 11; 29; 56; 92;...;
St2 = 2 + 9
St3 = 2 + 9 + 18 = 2 + 9 \(\times\) ( 1 + 2)
St4 = 2 + 9 + 18 + 27 = 2 + 9 \(\times\) (1 + 2 + 3)
St5 = 2 + 9 + 18 + 27 + 36 = 2 + 9 \(\times\)( 1 + 2 + 3 + 4)
..................
Stn = 2 + 9 \(\times\) ( 1 + 2 + 3 + ...+ n-1)
Stn = 2 + 9 \(\times\) (n-1+1)\(\times\)(n-1):2
Stn = 2 + 9 \(\times\) (n-1)\(\times\)n : 2
Số thứ 100 tức n = 100. Thay n = 100 vào biểu thức
Stn = 2 + 9 \(\times\) (n-1) \(\times\) n : 2 ta có:
Stn = 2 + 9 \(\times\) (100 - 1) \(\times\) 100 : 2 = 44552
b, St1 = 2
St2 = 2 + 9 \(\times\) 1 \(\times\) 2 : 2
St3 = 2 + 9 \(\times\) 2 \(\times\) 3 : 2
St4 = 2 + 9 \(\times\) 3 \(\times\) 4 : 2
......................................
St10 = 2 + 9 \(\times\) 9 \(\times\) 10 : 2
Cộng vế với vế ta được:
St1+St2+...+St10 = 2 \(\times\)10 + \(\dfrac{9}{2}\) \(\times\)( 1\(\times\)2 + 2 \(\times\)3 +...+9\(\times\)10)
Đặt : A = 1\(\times\)2 + 2\(\times\)3 + 3\(\times\)4 +...+ 9 \(\times\)10
3 A = 1\(\times\)2\(\times\)3 + 3\(\times\)4\(\times\)3 +...+ 9\(\times\)10\(\times\)3
3A = 1\(\times\)2\(\times\)3 + 3\(\times\)4\(\times\)(5-2) +...+ 9\(\times\)10\(\times\)(11-8)
3A = 1\(\times\)2\(\times\)3 + 3\(\times\)4\(\times\)5 - 3\(\times\)4\(\times\)2 +...+ 9\(\times\)10\(\times\)11-9\(\times\)10\(\times\)8
3A = 9\(\times\)10\(\times\)11 ⇒ A = 9\(\times\)10\(\times\)11 : 3 = 330
S = 20 + \(\dfrac{9}{2}\) \(\times\) 330 = 1505