Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. A - B = 40+ 3/8 + 7/82 + 5/83 + 32/85 - (24/82 + 40+ 5/82 + 40/84 + 5/84 )
= 40.85/85 + 3.84/85 + 7.83/85 + 5.82/85 + 32/85 - 24.83/85 - 40.85/85 - 5.83/85 - 40.8/85 - 5.8/85
= 40.85/85 + 24.83/85 + 7.83/85 + 5.82/85 + 32/85 - 24.83/85 - 40.85/85 - 5.83/85 - 40.8/85 - 5.8/85
= 7.83/85 + 5.82/85 + 32/85 - 5.83/85 - 40.8/85 - 5.8/85
= 7.83/85 + 5.82/85 -8/85 - 5.83/85 - 40.8/85
= 2.83/85 + 5.82/85 - 40.8/85 - 8/85
= 2.83/85 + 40.8/85 - 40.8/85 - 8/85
= 2.83/85 - 8/85 > 0
Vay A > B
1,
a, \(11.11.11=11^3\)
b,\(55.5.5.13.13=55.5^2.13^2\)
c, \(3^7.3^{10}.3^2=3^{\left(7+10+2\right)}=3^{19}\)
d, \(2^5.2^6.2^7.2.2.2=2^5.2^6.2^7.2^3\)
e, \(2^9:2^3.2^4=2^6.2^4=2^{10}\)
2,
\(4^9:8^5=8\)
\(32^{10}:8^5=4^{10}.8^{10}:8^5=4^{10}.8^5\)
\(9^{15}:27^{10}=9^{15}:9^{10}.3^{10}=9^5.3^{10}\)( tự tính)
3,
Ta có:
\(7^{200}=7^{2.100}=\left(7^2\right)^{100}=49^{100}\)
\(2^{700}=2^{7.100}=\left(2^7\right)^{100}=128^{100}\)
Vì \(128^{100}>49^{100}\)nên \(2^{700}>7^{200}\)
\(\frac{2^5.7+2^5}{2^5.5^2-2^5.3}=\frac{2^5.\left(7+1\right)}{2^5.\left(5^2-3\right)}=\frac{8}{25-3}=\frac{8}{22}=\frac{4}{11}\)
\(\frac{3^4.5-3^6}{3^4.13+3^4}=\frac{3^4.\left(5-3^2\right)}{3^4.\left(13+1\right)}=\frac{5-9}{14}=\frac{-4}{14}=\frac{-2}{7}\)
\(\frac{-2}{7}=\frac{-22}{77}\)
\(\frac{4}{11}=\frac{28}{77}\)
ta có: M=\(\frac{3}{8^3}\)+\(\frac{7}{8^4}\) =\(\frac{3.8}{8^4}\)+\(\frac{7}{8^4}\) =\(\frac{3.8+7}{8^4}\)=\(\frac{31}{8^4}\)
ta lại có: N =\(\frac{7}{8^3}\)+\(\frac{3}{8^4}\)=\(\frac{7.8}{8^4}\)+\(\frac{3}{8^4}\)=\(\frac{59}{8^4}\)
vì 84>0 mà 31<59 nên \(\frac{31}{8^4}\)<\(\frac{59}{8^4}\) hay M<N
vậy M<N
\(M=3^5+3^6+..+3^{32}\)
\(\Rightarrow3M=3^6+3^7+3^8+...+3^{33}\)
\(\Rightarrow3M-M=3^{33}-3^5\)
\(M=\frac{3^{33}-3^5}{2}\)
Có \(3^{33}-3^5< 3^{33}\)nên \(\frac{3^{33}-3^5}{2}< 3^{33}\)
Vậy \(M< 3^{33}\)