K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2018

\(\frac{2^5.7+2^5}{2^5.5^2-2^5.3}=\frac{2^5.\left(7+1\right)}{2^5.\left(5^2-3\right)}=\frac{8}{25-3}=\frac{8}{22}=\frac{4}{11}\)

\(\frac{3^4.5-3^6}{3^4.13+3^4}=\frac{3^4.\left(5-3^2\right)}{3^4.\left(13+1\right)}=\frac{5-9}{14}=\frac{-4}{14}=\frac{-2}{7}\)

\(\frac{-2}{7}=\frac{-22}{77}\)

\(\frac{4}{11}=\frac{28}{77}\)

27 tháng 7 2018

= 28/77 

      

7290 câu b tẹo nữa tính tiếp

12 tháng 2 2018

a) \(\frac{2^3.3^4}{2^2.3^2.5}=\frac{2.3^2}{1.1.5}=\frac{18}{5}\)

b) \(\frac{2^4.5^2.11^2.7}{2^3.5^3.7^2.11}=\frac{2.1.11.1}{1.5.7.1}=\frac{22}{35}\)

17 tháng 2 2016

a. \(\frac{2^3.3^4}{2^2.3^2.5}=\frac{2^2.3^2.2.3^2}{2^2.3^2.5}=\frac{2.9}{5}=\frac{18}{5}\)

b. \(\frac{2^4.5^2.11^2.7}{2^3.5^3.7^2.11}=\frac{2^3.5^2.7.11.2.11}{2^3.5^2.7.11.5.7}=\frac{2.11}{5.7}=\frac{22}{35}\)

24 tháng 7 2017

\(A=2^0+2^1+2^2\)\(+2^3+...+\)\(2^{50}\)

\(2A=2+2^2+2^3+...+2^{51}\)

\(2A-A=A=2^{51}-2^0\)

\(B=5+5^2+5^3+...+5^{99}+5^{100}\)

\(5B=5^2+5^3+5^4+...+5^{100}+5^{101}\)

\(5B-B=4B=5^{101}-5\)

\(B=\frac{5^{101}-5}{4}\)

\(C=3-3^2+3^3-3^4+...+\)\(3^{2007}-3^{2008}+3^{2009}-3^{2010}\)

\(3C=3^2-3^3+3^4-3^5+...-3^{2008}+3^{2009}-3^{2010}+3^{2011}\)

\(3C+C=4C=3^{2011}+3\)

\(C=\frac{3^{2011}+3}{4}\)

\(S_{100}=5+5\times9+5\times9^2+5\times9^3+...+5\times9^{99}\)

\(S_{100}=5\times\left(1+9+9^2+9^3+...+9^{99}\right)\)

\(9S_{100}=5\times\left(9+9^2+9^3+...+9^{99}+9^{100}\right)\)

\(9S_{100}-S_{100}=8S_{100}=5\times\left(9^{100}-1\right)\)

\(S_{100}=\frac{5\times\left(9^{100}-1\right)}{8}\)

24 tháng 10 2023

A=20+21+22+23+...++23+...+250250

2�=2+22+23+...+2512A=2+22+23+...+251

2�−�=�=251−202AA=A=25120

�=5+52+53+...+599+5100B=5+52+53+...+599+5100

5�=52+53+54+...+5100+51015B=52+53+54+...+5100+5101

5�−�=4�=5101−55BB=4B=51015

�=5101−54B=451015

�=3−32+33−34+...+C=332+3334+...+32007−32008+32009−320103200732008+3200932010

3�=32−33+34−35+...−32008+32009−32010+320113C=3233+3435+...32008+3200932010+32011

3�+�=4�=32011+33C+C=4C=32011+3

�=32011+34C=432011+3

�100=5+5×9+5×92+5×93+...+5×999S100=5+5×9+5×92+5×93+...+5×999

�100=5×(1+9+92+93+...+999)S100=5×(1+9+92+93+...+999)

9�100=5×(9+92+93+...+999+9100)9S100=5×(9+92+93+...+999+9100)

9�100−�100=8�100=5×(9100−1)9S100S100=8S100=5×(91001)

�100=5×(9100−1)8S100=85×(91001)

28 tháng 4 2017

a/\(\frac{3939-101}{3.2929+505}=\frac{39.101-101}{8787+505}=\frac{101.\left(39-1\right)}{87.101+5.101}=\frac{101.38}{101.\left(87+5\right)}=\frac{38}{92}\)

\(=\frac{38}{92}\)

28 tháng 4 2017

b/\(\frac{6.4+6.7}{6.5+12}=\frac{4+1.7}{1.5+2}=\frac{4+7}{5+2}=\frac{11}{7}\)

31 tháng 5 2018

a) \(\frac{2^3.3^4}{2^2.3^2.5}=\frac{2.3^2}{5}\)

b) \(\frac{2^4.5^2.11^2.7}{2^3.5^3.7^2.11}=\frac{2.11}{5.7}\)

c) \(\frac{121.75.130.69}{39.60.11.198}=\frac{11^2.3.5^2.2.5.13.23.3}{13.3.2^3.3.5.11.11.3^2.2}\)

\(=\frac{11^2.3^2.5^3.2.13.23}{13.3^4.2^4.5.11^2}=\frac{5^2.23}{3^2.2^3}\)

31 tháng 5 2018

a,\(\frac{2^3.3^4}{2^2.3^2.5}=\frac{2^2.2.3^2.3^2}{2^2.3^2.5}\)\(=\frac{2.3^2}{5}\)

b,\(\frac{2^4.5^2.11^2.7}{2^3.5^3.7^2.11}=\frac{2^3.2.5^2.11.11.7}{2^3.5^2.5.7.7.11}=\frac{2.11}{5.7}\)