K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2018

a) Xét tam giác AEC và tam giác ABD:

- ∠BAC chung

- ∠ACE = ∠ADB

⇒ △AEC đồng dạng △ABD (g.g)

b) Theo câu a ⇒ \(\dfrac{AE}{AC}=\dfrac{AD}{AB}\)

- ∠BAC chung

=> △ADE đồng dạng △ABC

c) △BEC đồng dạng △BFA(g.g)

=> \(\dfrac{BE}{BF}=\dfrac{BC}{BA}\)

=> AB.BE=BF.BC (1)

△CDB đồng dạng △CFA(g.g)

=> \(\dfrac{CD}{CF}=\dfrac{BC}{AC}\) => CD.AC=CF.BC (2)

Từ (1) và (2) => AB.BE+CD.AC=BF.BC+CF.BC=BC(BF+CF)=BC2.

3 tháng 4 2018

24 tháng 4 2017

Khó king khủng em mới học lớp 4 thôi để em ăn cháo sen bát bảo minh trung làm được ngay nhưng phải làm thêm tí bò húc với lại rượu đế ! la la la la la ta là một con người

18 tháng 2 2020

A B C E D H I

a) Xét \(\Delta AEC\) và \(\Delta ADB\) có :

\(\hept{\begin{cases}\widehat{A}chung\\\widehat{AEC}=\widehat{ADB}\left(=90^o\right)\end{cases}}\)

\(\Rightarrow\Delta AEC\) đồng dạng  \(\Delta ADB\) (g.g)

b)  Ta có : \(\Delta AEC\) đồng dạng   \(\Delta ADB\)

\(\Rightarrow\frac{AE}{AD}=\frac{AC}{AB}\)

Xét \(\Delta ADE\) và \(\Delta ABC\) có :

\(\hept{\begin{cases}\widehat{A}chung\\\frac{AE}{AD}=\frac{AC}{AB}\left(cmt\right)\end{cases}}\)

\(\Rightarrow\Delta ADE\) đồng dạng \(\Delta ABC\) (c.g.c)

c)  Xét  \(\Delta ABF\) và \(\Delta CBE\) có :

\(\hept{\begin{cases}\widehat{B}hung\\\widehat{AFB}=\widehat{CEB}=90^o\end{cases}}\)

\(\Rightarrow\Delta ABF\) đồng dạng \(\Delta CBE\) (g.g)

\(\Rightarrow\frac{AB}{CB}=\frac{BF}{BE}\Rightarrow BE\cdot AB=BC\cdot BF\)

Chứng minh tương tự ta có : \(\Delta BDC\) đồng dạng \(\Delta AFC\) (g.g)

\(\Rightarrow\frac{DC}{FC}=\frac{BC}{AC}\Rightarrow CD\cdot AC=FC\cdot BC\)

Khi đó : \(BE.AB+CD.AC=BF.BC+FC.BC=BC.BC=BC^2\)

 

A B C D E F H I

a, Xét \(\Delta AEC\)và \(\Delta ABD\)có 

\(\widehat{AEC}=\widehat{ADB}=90^0\)

\(\widehat{A}chung\)

\(\Rightarrow\)\(\Delta AEC\)\(đồng dạng\)\(\Delta ABD\)(g.g)

b, Vì  \(\Delta AEC\)\(đồng dạng\)\(\Delta ABD\)(g.g) nên \(\frac{AD}{AC}=\frac{AE}{AB}\)

Xét \(\Delta ADE\)và \(\Delta ABC\)

​​​​​​\(\frac{AD}{AC}=\frac{AE}{AB}\)​,\(\widehat{A}\)chung

\(\Rightarrow\)\(\Delta ADE\)​đồng dạng \(\Delta ABC\)(c.g.c)

Các câu còn lại khi nào rảnh giải tiếp :P

Hình Tự Vẽ

 Xét \(\Delta AEC\)và \(\Delta ADB\)có :\(\widehat{A}\)chung :\(\widehat{E}\)=\(\widehat{D}\)\(\Rightarrow\)\(\Delta AEC\)\(\approx\)\(\Delta ADB\)\(\Rightarrow\)\(\widehat{ABD}\)=\(\widehat{ACE}\)

Xét \(\Delta HDC\)và \(\Delta HEB\)có : \(\widehat{D}\)=\(\widehat{C}\)\(\widehat{HCD}\)=\(\widehat{HBE}\)\(\Rightarrow\)\(\Delta HDC\)\(\approx\)\(\Delta HEB\)\(\Rightarrow\)\(\frac{HB}{HC}\)\(\frac{HE}{HD}\)\(\Rightarrow\)HB.HD=HC.HE

9 tháng 8 2020

a) Xét tam giác ADB và tam giác AEC có:

Chung DAB; 2 góc vuông ADB=AEC=90 độ (có 2 đường cao BD, CE lần lượt hạ từ B; C xuống)

=> Đồng dạng theo TH gg

b; c) Có: BEC=BDC=90 độ

=> Tứ giác BCDE nội tiếp 

=> góc HDE= góc ECB (tính chất)

=> tam giác HDE đồng dạng tam giác HCB (gg)

=> \(\frac{HD}{HE}=\frac{HC}{HB}\)

=> \(HD.HB=HC.HE\)(ĐPCM)

d) Xét tứ giác ADHE có: góc ADH=góc AEH=90 độ 

=> góc ADH + góc AEH=90+90=180 độ 

=> Tứ giác ADHE nội tiếp 

=> góc AHD=góc AED (tính chất) (*)

Có tứ giác BCDE nội tiếp (cmt) => góc AED=góc ACB (tính chất) (**)

Từ (*) và (**) => góc ACB=góc AHD.

=> Tam giác DHA đồng dạng tam giác DCB (gg) khi có \(\hept{\begin{cases}ACB=AHD\left(cmt\right)\\ADH=BCD=90\end{cases}}\)

=> \(\frac{DH}{DA}=\frac{DC}{DB}\)

=> \(DH.DB=DA.DC\)(ĐPCM)

e) Đề bài sai nhé (CM đồng dạng chứ ko phải là CM bằng nhau)

Có: góc AED=góc ACB (cmt)

Và có chung góc DAE

=> Tam giác ADE đồng dạng tam giác ACB (gg)

=> ĐPCM

a: Xét ΔCDH vuông tại D và ΔCBA vuông tại B có

góc BCA chung
Do đó: ΔCDH\(\sim\)ΔCAB

b: Xét ΔABC vuông tại B và ΔADE vuông tại D có

góc DAE chung

Do đo: ΔABC\(\sim\)ΔADE

Suy ra: AB/AD=AC/AE
hay \(AB\cdot AE=AD\cdot AC\)

c: Xét ΔCFA vuông tại F và ΔCDE vuông tại D có

góc DCE chung

Do đo: ΔCFA\(\sim\)ΔCDE

Suy ra: CF/CD=CA/CE
hay CF/CA=CD/CE

Xét ΔCFD và ΔCAE có

CF/CA=CD/CE
góc FCD chung

Do đó: ΔCFD\(\sim\)ΔCAE

9 tháng 2 2022

∠ nghĩa là j thế , xl hơi ngu:<

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có 

\(\widehat{BAD}\) chung

DO đó: ΔADB∼ΔAEC

Suy ra: AD/AE=AB/AC
hay AD/AB=AE/AC

Xét ΔADE và ΔABC có 

AD/AB=AE/AC

\(\widehat{DAE}\) chung

Do đó: ΔADE∼ΔABC

b: Xét ΔHEB vuông tại E và ΔHDC vuông tại D có 

\(\widehat{EHB}=\widehat{DHC}\)

Do đó: ΔHEB\(\sim\)ΔHDC
Suy ra: HE/HD=HB/HC

hay \(HE\cdot HC=HB\cdot HD\)

3 tháng 4 2018

a)   \(\Delta ABC\)  có    2 đường cao   \(AD\) và     \(BE\)cắt nhau tại  \(H\)

\(\Rightarrow\)\(H\)là trực tâm \(\Delta ABC\)

\(\Rightarrow\)\(CH\perp AB\)tại   \(I\)

b)   Xét  \(\Delta ABE\)và   \(\Delta ACI\) có:

\(\widehat{AEB}=\widehat{AIC}=90^0\)  

\(\widehat{BAC}\)   CHUNG

suy ra:  \(\Delta ABE~\Delta ACI\)

\(\Rightarrow\)\(\frac{AB}{AC}=\frac{BE}{CI}\)\(\Rightarrow\)\(BE=\frac{AB.CI}{AC}\)

hay   \(BE=\frac{10.9}{15}=6\)

c)  Xét \(\Delta HEA\) và   \(\Delta HDB\)có:

\(\widehat{HEA}=\widehat{HDB}=90^0\)

\(\widehat{AHE}=\widehat{BHD}\) (đối đỉnh)

suy ra:  \(\Delta HEA~\Delta HDB\)

d)   Xét  \(\Delta IHB\)và    \(\Delta EHC\)có:

\(\widehat{HIB}=\widehat{HEC}=90^0\)

\(\widehat{IHB}=\widehat{EHC}\)   đối đỉnh

suy ra:  \(\Delta IHB~\Delta EHC\)

e)     \(\Delta BEA\)\(~\)   \(\Delta CIA\)

\(\Rightarrow\)\(\frac{EA}{IA}=\frac{AB}{AC}\)

\(\Rightarrow\)\(\frac{AE}{AB}=\frac{AI}{AC}\)

Xét   \(\Delta AEI\) và   \(\Delta ABC\)có:

\(\frac{AE}{AB}=\frac{AI}{AC}\) (cmt)

\(\widehat{BAC}\)  chung

suy ra:    \(\Delta AEI~\Delta ABC\)

g)   C/m:   \(\Delta BEC~\Delta ADC\)  (g.g)

\(\Rightarrow\) \(\frac{EC}{DC}=\frac{BC}{AC}\)

\(\Rightarrow\)\(EC.AC=BC.DC\)