K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(P\left(x\right)⋮Q\left(x\right)\)

\(\Leftrightarrow2x^3-7x^2+5x+1⋮2x-1\)

\(\Leftrightarrow2x^3-x^2-6x^2+3x+2x-1+2⋮2x-1\)

\(\Leftrightarrow2⋮2x-1\)

\(\Leftrightarrow2x-1\in\left\{1;-1;2;-2\right\}\)

\(\Leftrightarrow2x\in\left\{2;0;3;-1\right\}\)

hay \(x\in\left\{1;0;\dfrac{3}{2};-\dfrac{1}{2}\right\}\)

1 tháng 11 2018

1. Thực hiện phép chia đa thức: ta có kết quả:

\(x^3+5x^2+3x+a=\left(x+3\right)\left(x^2+2x+b\right)+\left(-3-b\right)x+a-3b\)

Để f(x) chia hết cho x2+2x+b thì -3-b=0 và a-3b=0 <=> b=-3; a=-9

16 tháng 10 2016

Đặt phép chia ta thấy A(x) chia cho B(x) được x^2-2x-1/2 và dư m-3/2

Để A(x) chia hết cho B(x) thì m-3/2=0 <=> m=3/2

(bạn biết cách chia đa thức một biến rồi chứ)
 

18 tháng 2 2018

6) Ta có

\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)

\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)

\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)