Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: x là đơn thức một biến
b: A(x)=-x^2+2/3x-1
Đặt A(x)=0
=>-x^2+2/3x-1=0
=>x^2-2/3x+1=0
=>x^2-2/3x+1/9+8/9=0
=>(x-1/3)^2+8/9=0(vô lý)
c: B(-3)=(-3)^2+4*(-3)-5
=9-5-12
=4-12=-8
Tìm GTNN của : \(x^2-4x+3\)
\(x^2-4x+3=x^2-4x+4-1=\left(x-2\right)^2-1\)
Vì \(\left(x-2\right)^2\ge0\) nên \(\left(x-2\right)^2-1\ge-1\)
Vậy GTNN của biểu thức là -1 . Dấu bằng xảy ra khi x = 2
2) \(\left(2x-1\right)\left(x+5\right)-3.\left(x-2\right)^2+\left(x+4\right)\left(x-4\right)\)
\(=2x^2+10x-x-5-3.\left(x^2-4x+4\right)+x^2-16\)
\(=2x^2+9x-5-3x^2+12x-12+x^2-16=21x-33\)
Khi x = -2 thì A = 21 . (-2) -33 = -75
Ta có
\(\frac{4x^2-7x+3}{1-x^2}=\frac{A}{x^2+2x+1}\)
<=>\(\frac{\left(4x-3\right)\left(x-1\right)}{\left(1-x\right)\left(1+x\right)}=\frac{A}{\left(x+1\right)^2}\)
<=>\(A=\frac{\left(3-4x\right)\left(x-1\right)\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\left(3-4x\right)\left(x+1\right)\)
<=>\(A=3x-4x^2+3-4x=-4x^2-x+3\)
b
Với \(x\ge2\)
=>/x-2/=x-2
Vậy ta có
x-2=1
<=>x=3
Với x=3=>A=...
Với x<2
=>/x-2/=2-x
Vậy ta có
2-x=1
=>x=1
=>A=....
c,Ta có
\(A=0<=>-4x^2-x+3=0\)
<=>\(\left(3-4x\right)\left(x+1\right)=0\)
<=>\(x=\frac{3}{4};x=-1\)
d
Ta có
\(-A=4x^2+x-3=4\left(x^2+\frac{1}{4}x-\frac{3}{4}\right)=4\left(x+\frac{1}{2}\right)^2-4\)
=>\(A=-4\left(x+\frac{1}{2}\right)^2+4\le4\)
Dấu = xảy ra <=>x=-1/2
Nhớ tick cho mình nhak. cảm ơn nhiều
1. a) \(8x^3-32x=8x\left(x^2-4\right)=8x\left(x-4\right)\left(x+4\right)\)
b) \(y^3+64+\left(y+4\right)\left(y-16\right)=\left(y^3+4^3\right)+\left(y+4\right)\left(y-16\right)\)
\(=\left(y+4\right)\left(y^2-4y+16\right)+\left(y+4\right)\left(y-16\right)=\left(y+4\right)\left(y^2-4y+16+y-16\right)\)
\(=\left(y-4\right)\left(y^2-3y\right)=\left(y-4\right)y\left(y-3\right)\)
2) a)
\(4x^3-9x=0\)
\(\Leftrightarrow x\left(4x^2-9\right)=0\)
\(\Leftrightarrow x\left(2x+3\right)\left(2x-3\right)=0\)
<=> x=0 hoặc 2x+3=0 hoặc 2x-3=0
<=> x=0 hoặc x=-3/2 hoặc x=3/2
b) \(A=x^3-9x^2+27x-27=x^3-3.x^2.3+3.x.3^2-3^3=\left(x-3\right)^3\)
Tại x=203
A=(203-3)3=2003
Bài 1 :
a) \(8x^3-32x\)
\(=8x\left(x^2-4\right)\)
\(=8x\left(x-2\right)\left(x+2\right)\)
b) \(y^3+64+\left(y+4\right)\left(y-16\right)\)
\(=\left(y^3+4^3\right)+\left(y+4\right)\left(y-16\right)\)
\(=\left(y+4\right)\left(y^2-4y+16\right)+\left(y+4\right)\left(y-16\right)\)
\(=\left(y+4\right)\left(y^2-4x+16+y-16\right)\)
\(=\left(y+4\right)\left(y^2+y-4x\right)\)
Bài 2 :
a) \(4x^3-9x=0\)
\(x\left(4x^2-9\right)=0\)
\(x\left[\left(2x\right)^2-3^2\right]=0\)
\(x\left(2x-3\right)\left(2x+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\2x-3=0\\2x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{3}{2}\\x=\frac{-3}{2}\end{cases}}}\)
P.s: ở trên dùng ngoặc vuông nhé
b) \(A=x^3-9x^2+27x-27\)
\(A=x^3-3\cdot x^2\cdot3+3\cdot x\cdot3^2-3^3\)
\(A=\left(x-3\right)^3\)
Thay x = 203 vào biểu thức ta có :
\(A=\left(203-3\right)^3\)
\(A=200^3\)
\(A=8000000\)
`@` `\text {Ans}`
`\downarrow`
`P(x)+Q(x)-R(x)`
`= 5x^2 + 5x - 4 +2x^2 - 3x + 1 - (4x^2 - x + 3)`
`= 5x^2 + 5x - 4 + 2x^2 - 3x + 1 - 4x^2 + x - 3`
`= (5x^2 + 2x^2 - 4x^2) + (5x - 3x + x) + (-4 + 1 - 3)`
`= 3x^2 + 3x - 6`
Thay `x=-1/2`
`3*(-1/2)^2 + 3*(-1/2) - 6`
`= 3*1/4 - 3/2 - 6`
`= 3/4 - 3/2 - 6`
`= -3/4 - 6 = -27/4`
Vậy, khi `x=-1/2` thì GTr của đa thức là `-27/4`
P(x)+Q(x)-R(x)
=5x^2+5x-4+2x^2-3x+1-4x^2+x-3
=2x^2+3x-6(1)
Khi x=-1/2 thì (1) sẽ là 2*1/4+3*(-1/2)-6=1/2-3/2-6=-7
\(ĐKXĐ:\hept{\begin{cases}x\ne\pm1\\x\ne-\frac{1}{2}\end{cases}}\)
a) \(A=\left(\frac{1}{x-1}+\frac{x}{x^3-1}\cdot\frac{x^2+x+1}{x+1}\right):\frac{2x+1}{x^2+2x+1}\)
\(\Leftrightarrow A=\left(\frac{1}{x-1}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right):\frac{2x+1}{\left(x+1\right)^2}\)
\(\Leftrightarrow A=\frac{x+1+x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{\left(x+1\right)^2}{2x+1}\)
\(\Leftrightarrow A=\frac{\left(2x+1\right)\left(x+1\right)}{\left(x-1\right)\left(2x+1\right)}\)
\(\Leftrightarrow A=\frac{x+1}{x-1}\)
b) Thay \(x=\frac{1}{2}\)vào A, ta được :
\(A=\frac{\frac{1}{2}+1}{\frac{1}{2}-1}=\frac{\frac{3}{2}}{-\frac{1}{2}}=-3\)
\(1.x^2-4x+4=8\left(x-2\right)^5\)
\(\Leftrightarrow\left(x-2\right)^2-8\left(x-2\right)^5=0\)
\(\Leftrightarrow\left(x-2\right)^2\left[1-8\left(x-2\right)^3\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-2\right)^2=0\\1-8\left(x-2\right)^3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\\left(x-2\right)^3=\frac{1}{8}\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{5}{2}\end{cases}}}\)
\(T=4\left(a^3+b^3\right)-6\left(a^2+b^2\right)\)
\(=4\left(a+b\right)\left(a^2-ab+b^2\right)-6a^2-6b^2\)
\(=4\left(a^2-ab+b^2\right)-6a^2-6b^2\)(Vì a+b=1)
\(=4a^2-4ab+3b^2-6a^2-6b^2\)
\(=-2a^2-4ab-2b^2\)
\(=-2\left(a+b\right)^2=-2\)
a: \(\Leftrightarrow3x^3-x^2+3x^2-x-6x+2-a-2⋮3x-1\)
=>-a-2=0
hay a=-2
b: \(-x^2+x-1\)
\(=-\left(x^2-x+1\right)\)
\(=-\left(x^2-x+\dfrac{1}{4}+\dfrac{3}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}< 0\forall x\)
c: \(P\left(x\right)=x^2-5x+\dfrac{25}{4}-\dfrac{25}{4}=\left(x-\dfrac{5}{2}\right)^2-\dfrac{25}{4}\ge-\dfrac{25}{4}\forall x\)
Dấu '=' xảy ra khi x=5/2
d: \(f\left(x\right)=x^2-4x+4+5=\left(x-2\right)^2+5\ge5\forall x\)
Dấu '=' xảy ra khi x=2
Thay x = 1 vào pt ta được:
\(2.1^3+1^2-4.1-2\)
\(=2.1+1-4-2\)
\(=-3\)
Thay x = \(\dfrac{-1}{3}\) ta được:
\(2.\left(\dfrac{-1}{3}\right)^3+\left(\dfrac{-1}{3}\right)^2-4.\dfrac{-1}{3}-2\)
= \(2.\dfrac{-1}{27}+\dfrac{1}{9}+\dfrac{4}{3}-2\)
= \(\dfrac{-17}{27}\)
A= 2.x3+ x2 -4x -2
- Với x=1, thay vào đa thức ta được:
A =\(2.1^3+1^2-4.1-2\)
= 2+1-4-2
= -3
Vậy giá trị của đa thức A tại x=1 là -3
- Với x \(=\dfrac{-1}{3}\) ,thay vào đa thức ta được:
A = \(2.\left(\dfrac{-1}{3}\right)^3+\left(\dfrac{-1}{3}\right)^2-4.\left(\dfrac{-1}{3}\right)-2\)
=\(2.\left(\dfrac{-1}{27}\right)+\dfrac{1}{9}+\dfrac{4}{3}-2\)
\(=\dfrac{-2}{27}+\dfrac{1}{9}+\dfrac{4}{3}-2\)
= \(\dfrac{-17}{27}\)
Vậy giá trị của đa thức A tại x=\(\dfrac{-1}{3}\) là \(\dfrac{-17}{27}\)